
Why not install SSH on every server

Mark Bools

December 7, 2020

Last Modified: February 25, 2021

Abstract

Tempting though it may be, blindly enabling SSH on all your servers
is a huge mistake.

SSH is a convenient secure method of accessing your servers, so why not
enable it on all your servers so that you can log in and check the server our
when you have a problem?

To be clear, I’m talking here primarily of installing SSH to allow interac-
tive login. SSH used as a secure means non-interactive commands (typically
mediated by a configuration management tool like Ansible) is of less concern.

For all it’s good points SSH is a vulnerability. Firstly, it gives the user a
means to interact directly with the server. If that user has any privileges on
that server this means you have introduced the potential for human error in
managing that machines configuration. It is too easy to accidentally (or mali-
ciously) make modifications to a machines configuration and then overlook the
all important step of documenting that change so that subsequent development
knows that the configuration has changed.

A simple example. You have a communication issue between to machines
in your production environment, this is causing problems for some users so
your administrator logs onto the server they believe to be the problem and in-
vestigate. Their investigation soon reveals a small mistake in the server’s host
firewall. In order to mitigate the production issue the administrator ‘tweaks’
the firewall. All is now well with the production system and the issue is re-
solved.

Many months later an new development effort is launched and as part of
that effort a new environment is being built to reflect the current production
environment. The team use the current configuration documentation to build
the new system. After a few days the new system is brought online and the de-
velopment proceeds but a few days into development the team experiences some
‘odd’ behaviour not currently seen on the production system. Investigation un-
covers some issues with the inter-machine communication and ultimately with
one server’s host firewall. Deeper investigation uncovers a discrepancy between
the production server and the development server firewalls.

1



All this time and energy is wasted. Furthermore confidence in the accu-
racy of the current configuration is eroded. What other discrepancies between
the development and production environments remain undiscovered and what
impact will they have on the project?

In a real life environment this simple situation is often repeated multiple
times and the cumulative costs of discrepancies mount quickly. In many cases
the plan to duplicate the production configuration are abandoned as a lost
cause and the new development is simply planned as a new suite of servers
largely separate to the existing infrastructure.

All this stemmed from a well intentioned change made by an administrator
with direct access to the server via SSH.

The problem, of course, is not SSH itself but the provision of direct access
to the server. Since the majority of Linux installations provide direct access
via SSH I think it reasonable for the purposes of this article to use the one as
a proxy for the other.

So, if one is denying direct access to the servers how are engineers to diag-
nose faults?

The first thing we need is access to information about the server. There
are three things we might need when diagnosing a problem:

1. The machine’s current configuration.

2. The machine’s logs.

3. The machine’s operational state.

The first of these is best preserved if we follow good infrastructure as code
and continuous deployment practice (the polar opposite to having direct SSH
access). Strict adherence to these practices means engineers can, at any time,
look up, and in most instances replicate, the current deployed configuration of
the server.

The second can be provided by consolidated real-time logging within our
infrastructure. Engineers can refer to the centralised logging facility to see both
current and historic logs generated from a particular machine.

Finally, in a similar fashion to the logging, we have centralised real-time
analytics for our system. Engineers can reference current and historical time
series analytics (things such a process load, running threads, memory use, etc.)
These can be correlated with logs to assist in diagnosis.

All of this information can be made available to engineers with no need for
direct access to the machine itself. Furthermore, if configuration information
is provided through infrastructure as code and continuous delivery we should
be able to fairly efficiently build a duplicate server to which engineers can have
direct access.

Does this mean we never need direct access to a server? That rather de-
pends, but I contend that the number of times direct access is required, assum-
ing the above conditions are met, is vanishingly small.

2


