
Amateur vs. Professional: Optimisation

Mark Bools

February 22, 2021

Last Modified: February 22. 2021

Abstract

What distinguishes an amateur from a professional? Let’s consider
optimisation. (Obviously much of this is opinion.)

Optimisation is a topic often brought up online, and often incorrectly.
People will obsess about trivia, such as how to shave a few keystrokes from

their ViM use or how to shave milliseconds from their code run-time, or avoid
spawning sub-processes in the Bash scripts. Don’t get me wrong, there is a time
and place for being concerned about each of these, but it is not something the
professional worries about most of the time. The majority of these debates are
amateurs trying the flex, showing their ‘amazing’ skills. In truth, the harder
people try to impress like this the less professionals care.

A professional’s mantra is, ’get it working’—this is, after all, what we’re
paid to do.

Let’s consider a professional approach to tool use. Yes, you can save time
and effort by using your tools efficiently. It is worth learning efficient keystrokes
on ViM but only if you repeat the operation those keystrokes achieve thousands
of times. Spending time to learn (and by ‘learn’ I mean commit to muscle
memory so it becomes automatic) a keystroke pattern takes time and effort.
The time and effort you commit to this learning had better be less than the
time or effort saved by the repeat of those saved keystrokes.

Here’s the thing. If you do something often enough your muscle memory
will make it efficient over time. If you learn some shorter keystroke for an
operation you repeat hundreds of times a day then you may slow a little at
first but will quickly save time as your muscle memory improves. No need to
spend time actively trying to learn it, you’re going to just by doing it. And if
you don’t repeat it often in the course of your working day, then most likely
you didn’t need to save those keystrokes in the first place1.

1With regards to ViM, learning the general pattern
command\textrightarrow {}movement is definitely useful, as is learning the how to
move about ViM. Trust me, you’ll be doing this a lot so forcing yourself to, for example,
skip to last line on screen with L (rather then repeatedly mashing j) is going to stick real
quick once you’ve overcome the short-term slowdown.

1

When writing code the professional writes first for clarity and to make
the code work (yeah, obvious I know). Only once the code is working will they
worry about optimising. Arguing over whether a for loop is faster than a while
loop in compiler xyz is something best left to amateurs (or compiler designers).
Here’s the thing, we mere mortals can only know which parts of our code
need to be optimised once we can measure its performance. The ‘premature
optimisation’ of code is a leading cause of shitty over-complex code. Some
amateur thinks they know that accessing hash tables is microseconds slower
than array accesses in some programming language, so they torture their code
to use array even though the problem is better suited to hash tables. This
takes them hours longer to develop and debug, the code is a tangled mess but,
’hey! it runs 3 milliseconds faster than the hash version’. Great, but this code
is invoked once every minute in real use scenarios. Was all that effort worth
it? Is your dog shit code easy to maintain?

Contrast with the professional. Take the problem. Solve the problem in as
clear a way as possible. Run the code. Does it work? Yes. Is it fast enough for
the situation? Yes. Is it resource efficient enough? Yes. Job done, move on.
Result? Clear, maintainable code that satisfies the problem and was quickly
developed. It’s easier to debug and maintain because it is clearly written.

Suppose one of the conditions is not satisfied? If the clearly written code
does not run fast enough? No problem. Now the professional starts looking
at optimisation. First, the professional does not assume they know where
the problem lies, they measure the scale of the problem. Use performance and
coverage tools to figure out precisely where the code is being held up. Only then
do they start changing things around. It may turn out that the hash/array
access times are an insignificant factor. Let’s say we have a loop over some data
that’s slowing our code. Can I do a simple test to avoid that loop all together
in some circumstances? Have I got a loop within a loop (a very common costly
process), can I unpack these loops or short-circuit the loops? If so, does this
clear my performance bottleneck? If yes, then that’s the problem solved. If no,
then maybe, just maybe, it’s time to use array rather than hash2.

At this point the amateur may be feeling very smug because the professional
has had to finally admit that ’yes, arrays are an optimization in this case’, but in
truth the professional approach will produce better code overall and situations
requiring this sort of fine optimisation are the exception rather than the rule.
In over 30 years of working IT I can count on the fingers of one hand the times
that I’ve had to perform low-level optimisations. Most optimisations have been
less obvious but much grosser (like realising that maintaining a larger session
pool, or unpacking nested loops, will solve a problem, rather than fiddling with
shaving microseconds of my code3).

2When making this sort of change leave a comment detailing why you did it. This is one
of the circumstances in which extended comments are invaluable.

3Again, don’t get the idea you should simply throw resources at a problem! That sort of
thinking results in bloated shitty systems too. It’s about knowing where best to invest your
resources—especially you time.

2

Does this mean we should avoid learning more efficient ways of working?
No, of course not. Just don’t waste time fussing the detail too early.

3

