
Outline of a CI/CD Pipeline for Video Processing

Mark Bools

2023-06-27

Last Modified: 2023-06-27

Abstract

In this article we are going to discuss the outline for a Continuous In-
tegration/Continuous Deployment (CI/CD)1 pipeline to process videos.
Specifically, we are going to discuss a pipeline to take a main video,
an edit list, some inserts (ads, promos, etc.), some title cards (opening,
closing, transitions, etc.), and some metadata (like the description, title,
author, tags, categories, etc.) and use these to assemble a number of fi-
nal versions to be uploaded to various target services (YouTube, Vimeo,
lbry.tv, etc.).

The basic flowchart for our pipeline looks something like this.

metadata

templates

video inserts

main videos

make titlecards make titlevideo assemble video deploy video

announce video

Figure 1: Video Process Pipeline Basic Flowchart

We need to take care not to create a pipeline that requires massive storage.
A typical CI/CD pipeline starts with a change in something like a git reposi-
tory, perhaps the source code for our project. This implies that the resource
holds all the source for the pipeline. In our video workflow this is probably
not practicable as the resources are copied into the local fly worker container.
Copying a growing set of videos would swiftly result in gigabytes of files being
copied through our pipeline; not cool.

To avoid the potential growth of data we will key everything from our
metadata, using this as control to trigger a pipeline run and the content of the

1Automated process for building, testing, and deploying assets.

1



metadata will drive tasks in our pipeline to selectively upload other materials
from remote ‘pools’.

We will still be importing some resources in their entirety:

metadata This may end up being several files, or even several resources.
Things like Edit Decision List (EDL)2 used to determine cut points for
inserts, metadata for deployment and announcements, data describing
which videos are to be edited and which videos are to be inserted in
promo or ad slots, that sort of thing.

templates This resource provides things like the LATEX template used to gen-
erate title cards.

On the output side. Do we want to keep all the generated video locally?
Not really. So long as all the source material exists we do not really need to
keep the final product (it is after all being uploaded to remote services), but
we do want to have some may of verifying remote copies (i.e. those that have
been deployed so that we can determine if they need to be redeployed).

The Development Environment

We’ll start with a Python development environment I anticipate several tools
we need will be better as Python scripts than Bash scripts.

Obtain the base Python VM3.

bash

1 git clone https://gitlab.com/python-utils2/pythonvm.git
videoprocessor

C

C

You may need to change the Vagrantfile to map the concourse port to
something other than 9080. If you already have something mapped to that
port vagrant will complain when starting the VM.

Move into the new VM (this first run will take several minutes as the system
is updated and various Python tools are installed).

bash

1 cd videoprocessor
2 vagrant up

Once your VM is up and running, ssh into it.

2A list of ‘edits’; cut, insert, delete, etc. Usually presented in a standard text format
such as CMX 3600

3If you want to be sure you’re using the setup in this tutorial then
git checkout -b v0.1.0 once you’re in the workspace.

2



bash

1 vagrant ssh

From this point on we will work almost exclusively in this VM, so I will
highlight only operations not run in the VM/

Taking a look around

You will find that this VM has a few things already installed.

Concourse This is the ‘doer of things’ (their description) that we will use to
manage and run our build pipeline.

Docker Used to run the Concourse CI system on this development VM. We
will also use this to create containers to use in the Concourse pipeline.

Python We will use this to create the more complicated scripts in our pipeline.

Poetry A tool for Python package management.

A few commands help confirm everything is installed.

bash

1 docker --version
2 docker ps
3 fly --version
4 python --version
5 poetry --version

And you should see output something like the following (I’ve allowed the
version to ‘float’, so you’re versions will likely be different to those shown
below)..

docker

1 Docker version 20.10.3, build 48d30b5
2 CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS
NAMES

C

C
C

C

3 fcf478d39d95 concourse/concourse "dumb-init
/usr/loca..." 2 hours ago Up 2 hours
0.0.0.0:8080->8080/tcp concourse_ci_concourse_1

C

C
C

C

4 79df83906661 postgres
"docker-entrypoint.s..." 2 hours ago Up 2 hours
5432/tcp concourse_ci_concourse-db_1

C

C
C

C

3



fly –version

1 6.7.5

python –version

1 Python 3.8.2

poetry –version

1 Poetry version 1.1.4

The First Build Task: Making title cards

This is fairly straightforward; take a LATEX template, feed it a title and logo
and have it produce a PNG titlecard. Our inputs are therefore:

• LATEX template

• Logo

• Title string

Our outputs are:

• A title card PNG

The tools required to transform our inputs to our outputs are:

• LATEX processor

• ImageMagic, to convert the LATEX output (a PDF) to a PNG

We could create a specialised Docker Image for this, but I will reuse my
general purpose document generator image saltyvagrant/latex-docker (this
is itself a custom made image, but is not specialised in the sense that it contains
almost the entire LATEX Live installation making it a very large image, but I
reuse it for many Concourse tasks).

I have a logo already available (I prefer to preserve all images in SVG format
until final conversion to a target format). The LATEX template it fairly simple.

4



titlecard.tex

1 \documentclass[oneside]{standalone}
2

3 \usepackage{saltyvagrant}
4

5 \usepackage{graphicx}
6 \usepackage{xcolor}
7 \usepackage{tgadventor}
8 \renewcommand*\familydefault{\sfdefault}
9 \usepackage[T1]{fontenc}

10

11 \SetWatermarkScale{ 0.5 }
12

13 \begin{document}
14 \begin{minipage}{572bp}
15

\includegraphics[height=720bp]{logo_and_mascot/salty-logo-avatar-clipped.png}
C

C

16 \end{minipage}
17 \begin{minipage}[c][720bp]{705bp}
18 \fontsize{100}{130}\selectfont
19 \color{svblue}
20 \begin{center}
21 \getenv{TITLE}
22 \end{center}
23 \end{minipage}
24 \end{document}

The title itself is provided from a metadata file and inserted into the LATEX
process using the TITLE environment variable. We will discuss the LATEX pro-
cess in more detail in a later article in this series.

Where to start a build

One decision you need to make when designing build systems is ‘where does the
build start?’ By this I mean what do you consider the raw material for your
build. With straightforward software builds the most obvious raw material is
your source code. Less obvious raw materials are things like internationalisation
strings, embedded images, and the build itself (e.g. the Makefile). In the real
world it is seldom this obvious.

Even in a relatively straightforward build you have complications to con-
sider. If you’re building for multiple target platforms then it is likely that your
Makefile will be generated using configuration specific to the target platform.
This either moves your raw materials back one level (an additional configura-
tion and Makefile generation step) or you manually create several Makefiles
and thereby shift some of the burden from the build process to whomever makes

5



the builds (not a good option, but an option).
In the case of video processor some of the raw materials are also apparently

obvious; the main video and audio, the metadata (title, description, etc.).
Other, less obvious, sources include the build system itself. The various scripts
and tools used to perform the build. These scripts may well also be making
decisions about what and how to perform the build.

Beyond these ‘obvious’ points we may decide to create the title videos man-
ually, so these now become sources rather than the metadata and templates
etc. proposed above. Where you start your build will often be a matter of
judgement, experience, project requirements, and technical limitations. A sim-
ple example from our current build; why not start from raw video and audio
footage and have the build cut together the main video using an EDL also pro-
vided as source? This is entirely possible but also impractical for our purpose.
Editing the main video together is simpler using an Non-Linear Editor (NLE)4,
this video processing pipeline is performing the tedious tasks that can be easily
automated whereas pulling raw video and audio together into a coherent video
is (at least for me) much simpler using manual tools. (That said, if I were to
be truly bloody-minded I could have the NLE generate the EDL and then have
the build effectively repeat the main video cut, but that seems redundant to
my workflow.)

Musings on metadata

We now encounter our first issue. Generally we want changes to the ‘make title’
task sources to trigger a build (we can trigger tasks in several ways, but source
changes are the most common). Our source are; the metadata, the logo, and
the template. Here’s the issue, if the template changes do we really want to
trigger the task? If so, should it rebuild all title cards using the new template?
(Bearing in mind that creating new title cards implies that any videos that
used those title cards should also be regenerated.) What about if the logo
changes? Same issue as the template. What about the metadata? The only
piece of metadata we want to trigger a new title card is the title, any other
changes can be ignored for now.

I think that generally I do not want template or logo changes to trigger
complete rebuilds (maybe later I’ll look at manually triggering these wholesale
changes, following a rebranding for example, but day-to-day it’s safe to assume
changes to template or logo should effect only new title cards).

That leaves us with metadata changes. Title cards come in two types; those
specific to a video (for example the lead title card) and more general ‘inserts’
(like ‘. . . and now a word from our sponsor’) that may be reused in several
productions. Should we therefore maintain metadata as one large ‘database’,
or ‘one data file per production’, or ‘one data file per title card’?

4Tool/technique for editing video that allows the user to choose any point in the project
to work on.

6



We could make a case for any of these solutions. I’m going with one per
production but allowing a ’production’ to be one or more stand alone title
cards. This seems like a reasonable compromise to me as it keeps everything
more or less in one place for most videos but allows some flexibility to generate
stand alone items too. The corollary to this being that each production can
refer to other productions (so video A can use a title card produced by title
B). I may live to regret this decision, but this is an iterative process and we
need somewhere to start.

Why not go for one big lump of metadata? Mainly I think it would quickly
become unwieldy and difficult to edit by hand (no doubt leading to yet another
utility to maintain just the metadata and that roads leads to using databases,
all of which seems like a bit of overkill at the moment). Also, the design of this
whole pipeline means I may well not want to keep all metadata feeding in to
the start of the pipeline (more on this in a while).

The new task

Our new task has one more input, the script to perform the build. It is possible,
when your task’s image is specialised enough, to continue with the simple
‘one command’ but this task needs something more complex. Specifically, we
need the task to scan metadata and make decisions about which title cards to
produce.

Title Videos

We have a choice here. We can either make short stand alone videos from our
title cards or we can use some ffmpeg magic later on to insert the title cards
as short static section.

If we make short videos now it may reduce time rebuilding later (for example
reusing the titles in another project) but this also implies storing the title
videos somewhere so they can be reused. This seems unnecessary to shave a
few seconds of downstream activities.

If we insert the titles ‘on-the-fly’ we make the assembly of the final video
more complex (and consequently potentially more error prone) and more de-
manding on our downstream activity (the video must be reconstructed each
time).

I think that, for now, we will create them on-the-fly and only create them
separately if this proves troublesome.

Assembling the Final Video(s)

Wemay be assembling several version of the final video. Different ads, sponsors,
or promotions being placed into, or omitted from, the main video according to
the target platform. All this to be driven by our metadata.

7



Deploying the Final Video(s)

Our metadata can provide common information for each remote source (such
as authentication details). It can also present specific information for each
target, for example descriptions and ‘flags’ (those pop-over links available on
platforms like YouTube).

Announcing New Videos

Once the videos are deployed we can announce their availability. As with
deployment our metadata can provide authentication details for the various
announcement channels along with details of what each announcement should
contain. One of the main things in this section is to ensure we do not announce
multiple times if something goes wrong.

Final Thoughts

In this article I’ve started thinking about the CI/CD process for making and
publishing videos. Many of the details remain to be established but the broad
outline seems like a good start.

8


	The Development Environment
	Taking a look around
	The First Build Task: Making title cards
	Title Videos
	Assembling the Final Video(s)
	Deploying the Final Video(s)
	Announcing New Videos
	Final Thoughts

