
Core Concepts: Coupling
Mark Bools

May 29, 2021

Last Modified: 2022-02-01

Abstract

Examining the core concept of coupling, a measure of how difficult
things are to separate..

When we say that something is ‘tightly coupled’ it is a criticism, not a
complement. Things that are tightly coupled are difficult to separate and things
that are difficult to separate are, essentially, a single thing. This becomes a
critical problem when one of those things fails or changes.

Businesses often become tightly coupled to one another, to the detriment
of the dependant business. Consider the business based entirely on YouTube.
If YouTube change their terms of service the dependant business has no choice
but to comply. If YouTube decide to ban that business, close their account,
then that business is essentially ended. This is an example of the harms of
tight coupling.

Software coupling, best to worst:

Message Modules communicate by calling one another but passing no data.

Data Modules communicate by passing data only.

Stamp Passing entire data structures containing ‘tramp’ data, data that is not
relevant to the operation of the relationship between the two modules.

Control Modules pass control data, data that tells the recipient to behave
differently.

External Modules share dependence on a module external to the software.

Common Modules share data external to both.

Content Modules share details of their internal operation.

Coupling cannot be avoided entirely, all systems need some degree of data
sharing and calling between modules. The point with coupling, like cohesion,
is to keep control of coupling and reduce it as much as practicable.

Tighter coupling in software often leads to ripple effects when changes are
made to subordinate functions. Tight coupling can also lead to inefficient
builds, in particular it is often a barrier to build parallelization as subordinate
functions/modules/libraries will need to be built before their superiors.

1



Examples

Message

Suppose we have a module offering control over a motor in which there are two
functions start() and stop(). In another module we need to start and stop
the motor, so we use the two provided functions. Notice we pass no data while
invoking these functions. We have created a message coupling.

Message coupling is the loosest coupling on our list. It is relatively straight-
forward to drop in a replacement motor module, it need only provide the
start() and stop() functions.

Data

Consider if, instead of the simple start() and stop() functions we have one
speed(x) where x is the desired speed. Any client calls speed(0) to stop the
motor, but what about starting the motor? What is x? Can it be negative
(presumably putting the motor in reverse)? Is it an integer, a float, or some
other type? What does it represent, MPH, Km/h, percentage of maximum
speed?

These questions need to be answered and once answered create a more
complex relationship between the motor module and it’s clients. To replace
the motor module the new one would need to conform to the same data spec-
ification, otherwise the client will need to be changed to account for the new
motor module. This is data coupling, named for the focus on data.

Stamp

Related to data coupling is stamp coupling. Data coupling becomes stamp
coupling when the data passed is a composite and the components are not
directly related. Sticking with the motor example, suppose we had a data
structure containing various values relevant to the control and monitoring of
the motor; the set speed, the motor’s temperature, etc. We might decide to
pass this data structure to each function in the motor module. This creates
stamp coupling.

Suppose we decide to replace the motor module. The new module will likely
not understand the composite data structure. It may have no need for most
of the data in the structure (if the new module provides no monitoring it is
unlikely to have a use for the temperature).

Stamp coupling is worse than data coupling because it not only adds a re-
quirement that the client know something about the data used in the module
but also hides other, not necessarily relevant data (adding unnecessary bag-
gage).

2



Control

In control coupling the client passes some instruction to the module function
that tells the function how to behave. In the motor control example, the speed
function may take an optional reverse flag which if true causes the function
to change the motor’s speed to the reverse direction.

Control coupling is worse than stamp coupling because it can hide func-
tionality. If we replace the motor module the new module needs to support
the ‘magic’ reverse flag. Worse, suppose several modules refer to this global
variable and we decide to change the units (kph to mph), it is difficult to track
down all the modules that refer to this variable.

External

Instead of having a motor module, suppose we rely on the motor’s own interface
protocol. Any module in our system that needs to interact with the motor does
so directly. This creates external coupling.

Changing the type of motor used in our system would now require us to
hunt down and modify all the code in each module that used the motor control
protocol, a thankless and wholly avoidable task (not to mention error prone).

Common

If, instead of passing speed as a parameter to the motor module, we keep the
current motor speed in a global variable. We now have common coupling.

The problem with common coupling is, like control coupling, information
is being hidden. How could a client know that they must maintain this speed
variable?

Common coupling exists when modules communicate through data external
to both modules. Arguably the most common and overlooked form of external
coupling arises when data is put into a database.

Content

If you want to make your system monolithic, difficult to maintain and debug,
and very difficult to understand then expose module’s internals to one another.
Content coupling is wrong, period. Any part of your system exhibiting content
coupling needs to be rewritten (refactored) immediately. Content coupling is
so bad it is often called ‘pathological coupling’.

If our motor module held the speed in a local variable but client modules
access this and set the speed. This is terrible. Like common coupling this causes
problems when we want to change the meaning of the variable, but worse the
motor module has a reasonable expectation that it can change internal local
variables without needing to check client code.

3


	Examples

