
DevOps from Scratch
(Organisational)

Mark Bools

November 14, 2020

Last Modified: 2022-08-03

Contents

Contents iii

1 How to. . . 1
1.1 . . . read this book . 1
1.2 . . . get the most from this book 1

2 Core Concepts 3
2.1 Cohesion . 3
2.2 Coupling . 3
2.3 Abstraction . 3
2.4 Separation of Concerns . 3
2.5 Scope . 3
2.6 Context . 4
2.7 Contingency . 4
2.8 Entropy . 4
2.9 Parsimony . 4

3 DevOps from 20,000 feet 5

4 The Meta-project 9

A Brief History of “devops” 11

iii

Chapter 1

How to. . .

1.1 . . . read this book

If I was being flippant I might say, “with your eyes” but I’m bigger than that
so instead I will suggest some ways you might use this material.

This book is organised as a single narrative course centered around the
technology that supports DevOps. If you start on page one, read through each
page and follow along with all the material, you should end up being proficient
with the entire IT System Lifecycle Management.

Don’t have time to follow along from the start? Perhaps you already know
enough about networks and fell confident skipping that material. No problem.
At the start of each section you will find details of how to create an appropriate
environment for that section. These ‘checkpoints’ also mean that if you mess
up you can simply throw your environment away, recreate it using the closest
checkpoint and continue with the course.

Having difficulty? No problem. Ask for help. Someone in the community
may help and since I am in the community I can also help clarify things. If
enough people are confused by the material then obviously I messed up and
need to rewrite that material to be more clear; it shall be done.

Other books are available with more detailed material. Trying to cover
all of the many complex topics under the IT System Lifecycle Management
rubric would make this book not only much larger but also less focussed. My
solution is to write books to deep-dive into related topics and reference those
books from this one where appropriate. This way I hope you will find all the
guidance you need either here or in one of the supporting books.

All of these books undergo constant maintenance (hopefully improvement),
my only goal is to make the material more clear and more accessible over time.

1.2 . . . get the most from this book

Firstly, forget DevOps. Seriously, ignore it. Although this book uses the term
DevOps (mostly for marketing reasons) it is really more general, it is about

1

2 CHAPTER 1. HOW TO. . .

how to do IT System Lifecycle Management more effectively. DevOps is a
distraction at worst and only a small part of sucessful IT System Lifecycle
Management at best.

I’m assuming you’re primarily interested in the technical parts of this book.
If so, do the examples! You’ll get much more from the material by following
along and investigating for yourself. As for the non-technical parts of the book,
read them as general advice and observations, not hard and fast rules. More
people fail with IT System Lifecycle Management simply because they try to
implement DevOps, ITIL, etc. as hard and fast rules rather than guidance.

Chapter 2

Core Concepts

There are several concepts that crop up across the design and management of
IT that are so universally applicable that it is worth learning them regardless
of your specific interests.

This chapter introduces these core concepts.

2.1 Cohesion

Cohesion refers to how closely elements are related to one another. In generally
it is desirable to keep related things together and unrelated things separate.

2.2 Coupling

Coupling refers to how tightly to elements depend upon one another. In general
we want elements to be as independent as practicable.

2.3 Abstraction

Abstraction is the process of extracting the essential from the incidental.

2.4 Separation of Concerns

Separation of concerns is a general principal that employs abstraction to in-
creased cohesion and reduce coupling. The general idea is for elements to ‘mind
their own business’, performing a well bounded function (or set of factions).

2.5 Scope

Scope is the ‘range of applicability’ of an element.

3

4 CHAPTER 2. CORE CONCEPTS

2.6 Context

Everything operates in a context. Most of the time in IT the context is well
defined.

2.7 Contingency

Probably best summarised as ‘it depends’, contingency is the idea that we often
must account for things changing.

2.8 Entropy

‘Things degrade over time’, or perhaps more accurately ‘without concerted
effort to prevent it, thing get worse over time’. In software circles this is
colloquially known as ‘bit rot’, the idea that without specific work to avoid
it a software system’s structure will, over time, become more complex, more
difficult to maintain, and more prone to error.

2.9 Parsimony

The ‘KISS’ (Keep It Simple, Stupid) principle. Do not make things more
complex than required. The more parts a system has the more opportunity
the more things there are to go wrong, so it makes sense to use as few things
as possible.

Chapter 3

DevOps from 20,000 feet

This is the obligatory ‘what is DevOps’ chapter. The problem is DevOps has
been so abused as a term that it is largely useless but here goes.

The core idea of DevOps pre-dates the term DevOps, indeed at the start
of computing there was no significant distinction between user, developers, or
operators as users were also the developers and the operators. As comput-
ers matured from academic and military environments into more commercial
settings users split off into a clearly distinct group1. The people developing
systems also started to separate from the people operating the systems, partic-
ularly in the mainframe days where these vast machines required the constant
attention of operators who loaded punched cards and paper tape, and removes
printouts for delivery to developers or users. The advent of Teletype terminals
and subsequently video display terminals made it possible for user to interact
with systems blissfully ignorant of the operators behind the scenes. Similarly
developers became increasingly independent of the operators, able to write,
compile, and run their creations independent of the operators keeping things
running behind the scenes.

Once developers has completed their work they would hand over the finished
product to operators who would then take over the loading and operation of the
system on behalf of users. This generally worked well in the early days simply
because both developers and operators worked within the same organisation.
The increased commodification of software though increased the distance be-
tween developer and operator. Indeed operators would often take a software
product and install it knowing only that it was an IBM product, never knowing
or interacting with the developer. Because this gap developed between com-
mercial suppliers of software and those who operated the systems delivering
value to customers so too there tended to be an increasing gap between devel-
opers and operators even within a single organisation; why have one rule for
operators when working with an external supplier and another when working
with internal developers.

1Yes, I am massively over simplifying things here, but I think the point stands.

5

6 CHAPTER 3. DEVOPS FROM 20,000 FEET

This divorce between developers and operators made a certain sense when
delivering packages software, that is software that was a simple stand-alone
system. Developers had little concern about working well with others. The
operating system ensured the various programs running on the computer were
separated from one another so operators had few concerns. Products tended to
go through long life-cycles and this allowed for extensive testing (and testing
was somewhat simpler as the software operated largely on its own).

This situation did not last long though. Increased complexity meant in-
creased specialisation and consequently increased interaction between compo-
nents of a system. No longer would a development team write a system from
largely from scratch but they would take various commercial products and
build them into a system. Each building block would be treated as a black-box
and development teams where hostage to the delivery cycle of the vendor to fix
problems (resulting in code being developed by these teams to ‘work around’
perceived deficiencies in the commercial packages).

Long story short, the increased complexity of systems also increased the
complexity of delivering systems from development teams into operation. No
longer a simple ‘here it is’ the delivery became a complex set of operations
the install various off-the-shelf systems, configure them, then install the cus-
tom components, test they worked, etc. All this complexity resulted in either
longer delivery times (and wicked documents describing—hopefully—how the
installation should be performed), or more commonly development projects
would build out the first operational system and deliver the entire system to
the operations team (this saving the complexity of delivering build instructions
to operators). This second approach often became the norm.

Maintaining development teams after the initial system was delivered starts
to become expensive as more and more systems are delivered. Consequently it
is common for operations teams to take over maintenance of systems. Problems
arise when knowledge held by the developers evaporates with the development
team, seldom being effectively communicated to the operations team. This
leads to poor understanding of the system and consequently a struggle to di-
agnose and correct problems.

This problem is exacerbated by the advent of systems supporting web based
products and services. The rapid development and delivery of these systems
means constant rapid change.

Enter DevOps, a call to return to a culture in which developer and opera-
tors work closely together in both developing and maintaining systems. DevOps
philosophy complements the Agile movement which encourages close work be-
tween users and developers.

DevOps is about creating as frictionless a cycle as possible for the develop-
ment, validation, delivery, and monitoring of systems.

3.0.1 The DevOps Infinite Cycle

No doubt you’ve come across the DevOps steps illustrated as a sort of infinity
symbols. This suggests that DevOps is an endless cycles of these steps.

7

• Plan

• Code

• Build

• Test

• Release

• Deploy

• Operate

• Monitor

Chapter 4

The Meta-project

Author Note

This is an early draft, little more than notes and initial thoughts.

Every project has an associated ‘meta-project’ that deals with all the ac-
tivities necessary to support the main project.

9

A Brief History of “devops”

11

	Contents
	How to…
	…read this book
	…get the most from this book

	Core Concepts
	Cohesion
	Coupling
	Abstraction
	Separation of Concerns
	Scope
	Context
	Contingency
	Entropy
	Parsimony

	DevOps from 20,000 feet
	The Meta-project
	A Brief History of ``devops''

