
Git from Scratch

Mark Bools

2023-10-23

Last Modified: 2023-10-23

Contents

Contents iii

1 Setup 1
1.1 Required Tools . 1

2 Git Guts 3
2.1 Git Repository . 3
2.2 blobs . 5
2.3 trees . 11
2.4 commits . 19
2.5 refs . 27
2.6 References (branches and tags) 33

3 The Index 45
3.1 The Git Triumvirate: the repo, the index, and the work dir . . 45

4 Basic Local Workflow 47
4.1 Create a new repository . 47
4.2 Add a new file . 47
4.3 Change a file . 47
4.4 Add some directories and files 47

5 Working With Other Repositories 49
5.1 Remote refs . 49

iii

Chapter 1

Setup

1.1 Required Tools

The simplest way to follow along with this book is to install the standardised
environment.

• VirtualBox

• git

• vagrant

1

Chapter 2

Git Guts

Although commonly called a version control tool (and this is certainly the most
common use) it is useful to think of Git as an object file system. That might
not help much right now, but as we start to learn about Git you will hopefully
appreciate why I say this.

In this book we take a bottom up approach to learning git, first learning
the detail and then showing how the higher level git commands make many
operations simpler.

Why not investigate git top down? I firmly believe that learning only the
basic git operations is the cause of many problems people experience using git.
The basic git operations commonly taught to new users leads to a misleading
mental model of how git works, which in turn leads to confusion when git
does not behave according to this faulty mental model. Although learning git
‘bottom up’ takes more effort you are rewarded with git superpowers.

2.1 Git Repository

Watch “Initial setup of Git repository” on Vimeo

When we use git init, Git will create a repository in a .git directory
within the current working directory which become the Git workspace. You edit
your files in the workspace just as you normally would and use git commands
to manipulate objects and data stored in the .git database (known commonly
as the repository).

3

https://player.vimeo.com/video/510274346

4 CHAPTER 2. GIT GUTS

bash

1 mkdir class
2 cd class
3 ls -a
4 git init
5 tree -a

Within the .git directory are a number of files and sub-directories that
constitute the .git database.

tree -a

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 applypatch-msg.sample
8 commit-msg.sample
9 fsmonitor-watchman.sample

10 post-update.sample
11 pre-applypatch.sample
12 pre-commit.sample
13 prepare-commit-msg.sample
14 pre-push.sample
15 pre-rebase.sample
16 pre-receive.sample
17 update.sample
18 info
19 exclude
20 objects
21 info
22 pack
23 refs
24 heads
25 tags
26

27 9 directories, 15 files

A few are of less interest to us at the moment:

• config—holds configuration to be used on this repository (more on git
configuration later)

• description—used to provide a description of this repository to the web
interface (not something we will look at for a while)

2.2. BLOBS 5

• info—contains the files to be ignored (.gitignore, to be investigated
later) for this project’s workspace.

• hooks—these are small scripts that can be triggered on certain actions.
We will use these later but for now they can be ignored. These take up a
lot of room on our output, we don’t need these, so let’s delete them (I’ll
leave the directory, even though it is not required, to remind us that it’s
typically there).

bash

1 rm .git/hooks/*

The ones we are most interested in this chapter are:

• HEAD—Holds a special reference to the last object stored from the workspace

• objects—this holds the data

• refs—this holds references into the data in objects

We will see several other files and directories created as we use Git and we
will discuss these as they occur.

There are several types of object held in .git repositories, the three we
will encounter in this chapter are:

1. blobs—containing the data we want to store (typically files)

2. trees—containing data about sets of blobs (and other trees)

3. commits—containing metadata about trees

No need to worry about the details, all will become clear as we progress
through this chapter.

2.2 blobs

Watch “Adding and displaying blobs” on Vimeo

We can use some low-level Git commands to create blobs directly1. The
git hash-object sub-command creates and stores objects. Let’s create an
object:

1In day-to-day use we will use high-level commands to interact with our repository but
in this chapter we’re interested in learning what Git does under the hood.

https://player.vimeo.com/video/512017457

6 CHAPTER 2. GIT GUTS

bash

1 echo 'version 1' > file1.txt
2 git hash-object file1.txt
3 tree .git

We created a simple text file and had git hash-object show us it’s hash
(a 40 character string, actually the SHA-1 hash of the file’s content) but this
object is not stored in the repository yet.

tree -a

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks/
7 info
8 exclude
9 objects

10 info
11 pack
12 refs
13 heads
14 tags
15

16 9 directories, 15 files

To have git hash-object store the file we use the -w option.

bash

1 git hash-object -w file1.txt
2 tree .git

https://en.wikipedia.org/wiki/SHA-1

2.2. BLOBS 7

tree -a

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 info
8 exclude
9 objects

10 83
11 baae61804e65cc73a7201a7252750c76066a30
12 info
13 pack
14 refs
15 heads
16 tags
17

18 10 directories, 16 files

The object is stored in the objects directory and the first two characters
of the hash are used to create a directory (this is called ‘sharding’ and it is
used to reduce the number of files stored in any one directory).

83baae61804e65cc73a7201a7252750c76066a30

blob

version 1

Figure 2.1: A Git ’blob’

It is important to note that Git has no idea what this blob is, it is just
some data. No record is held about the original file name, for that matter Git
doesn’t even care that this blob came from a file.

bash

1 echo 'not a file' | git hash-object -w --stdin
2 tree .git

8 CHAPTER 2. GIT GUTS

tree -a

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 info
8 exclude
9 objects

10 7a
11 b4ff63b2ea4c2c3ff89ee972bc42988a4b8472
12 83
13 baae61804e65cc73a7201a7252750c76066a30
14 info
15 pack
16 refs
17 heads
18 tags
19

20 11 directories, 17 files

Here the data for the blob is fed into Git straight from stdin, no file is
involved this is ‘raw data’.

83baae61804e65cc73a7201a7252750c76066a30

blob

version 1

7ab4ff63b2ea4c2c3ff89ee972bc42988a4b8472

blob

not a file

Figure 2.2: Two Git blobs

We can recall the blob from our repository using git cat-file (this is a
bit misleading and would be better called cat-object because, as we shall see,
we can use it to look inside various git objects).

bash

1 git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30

1 version 1

2.2. BLOBS 9

The -p option ‘pretty prints’ the content of the object to stdout so if we
want to create a file from this object we need to redirect it . . .

bash

1 git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30
> new_file.txt

C

C

2 cat new_file.txt

1 version 1

Typing out those long hash identities quickly becomes tiresome. Fortu-
nately Git allows us to specify shorter forms in many instances, specifically we
can provide just enough of the start of an object’s hash that is unambiguous.

bash

1 git cat-file -p 83ba

In most circumstances 6 to 8 characters is sufficient, here we can use just
4 because our repository has so few entries this is all that is required to un-
ambiguously reference each object. (We cannot go so far as reducing to just
2 as Git considers these too short—two characters will only identify the shard
directory, not the object file.)

We can add another version of our file1.txt without any confusion (be-
cause Git does not care about the filename at this point).

bash

1 echo 'version 2' > file1.txt
2 git hash-object -w file1.txt

Git adds the new object as a simple blob.

bash

1 tree .git
2 git cat-file -p 1f7a

10 CHAPTER 2. GIT GUTS

tree -a

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 info
8 exclude
9 objects

10 1f
11 7a7a472abf3dd9643fd615f6da379c4acb3e3a
12 7a
13 b4ff63b2ea4c2c3ff89ee972bc42988a4b8472
14 83
15 baae61804e65cc73a7201a7252750c76066a30
16 info
17 pack
18 refs
19 heads
20 tags
21

22 12 directories, 18 files

git cat-file -p 1f7a

1 version 2

So we can store blobs in our repository but this is of limited use as we
normally deal with directories containing files and these tend to have human
readable names (like file1.txt).

83baae

blob

version 1

7ab4ff

blob

not a file

1f7a7a

blob

version 2

Figure 2.3: Three Git blobs

2.3. TREES 11

2.3 trees

Watch “Manipuate the index and create trees” on Vimeo

To get Git to track filenames and directories we have it create a different
type of object called a ‘tree’ and to create tree objects we use the ‘index’. The
index is a sort of holding area within our repository2 (you will also see the
‘index’ called the ‘cache’ or ‘staging’ area). In the index we collect information
about all of the objects we want to store in our repository, then we use a single
command to create a tree entry using the entries in the index.

bash

1 git update-index --add --cacheinfo 100644
83baae61804e65cc73a7201a7252750c76066a30 file1.txt

C

C

2 tree .git

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 index
8 info
9 exclude

10 objects
11 1f
12 7a7a472abf3dd9643fd615f6da379c4acb3e3a
13 7a
14 b4ff63b2ea4c2c3ff89ee972bc42988a4b8472
15 83
16 baae61804e65cc73a7201a7252750c76066a30
17 info
18 pack
19 refs
20 heads
21 tags
22

23 12 directories, 19 files

2This is a lie! In Chapter 3 we will take a closer look at the index and learn why this lie
is so often repeated.

https://player.vimeo.com/video/514613186

12 CHAPTER 2. GIT GUTS

update-index is used to manipulate our repository index. Initially a new
repository has no index but after adding an object’s information to the index
we see a new file index (line 7 above). The --cacheinfo option specifies
the object data to be added. The file’s mode (100644) is stored, then the
object hash (83baae61804e65cc73a7201a7252750c76066a30), and finally the
filename we want to associated with the object (file1.txt). Note, these are
entirely under our control in the update-index command and do not have
to correspond with any real file. Even the object identity is not checked by
the update-index command (you should always provide a real hash though,
otherwise you will get an “invalid object” error when you attempt to write the
tree—up next).

Having created our index we can examine its content using git ls-files --stage,
the --stage option causes ls-files to display the mode and object hash.

bash

1 git ls-files --stage
2 git write-tree
3 git ls-files --stage

git ls-files --stage

1 100644 83baae61804e65cc73a7201a7252750c76066a30 0
file1.txt

C

C

git write-tree

1 b7e8fac7e3e35d93d39d2fa2260868f025a9efb4

git ls-files --stage

1 100644 83baae61804e65cc73a7201a7252750c76066a30 0
file1.txt

C

C

The git write-tree operation does not change the index file. The ls-files
shows us that the index is the same before and after the write-tree.

bash

1 tree .git

2.3. TREES 13

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 index
8 info
9 exclude

10 objects
11 1f
12 7a7a472abf3dd9643fd615f6da379c4acb3e3a
13 7a
14 b4ff63b2ea4c2c3ff89ee972bc42988a4b8472
15 83
16 baae61804e65cc73a7201a7252750c76066a30
17 b7
18 e8fac7e3e35d93d39d2fa2260868f025a9efb4
19 info
20 pack
21 refs
22 heads
23 tags
24

25 13 directories, 20 files

b7e8fa

tree

file1.txt

83baae

blob

version 1

7ab4ff

blob

not a file

1f7a7a

blob

version 2

Figure 2.4: A Git ‘tree’ object

After the write-tree a new object has appeared in our repository. The
hash for this object (b7e8fac7e3e35d93d39d2fa2260868f025a9efb4) is what

14 CHAPTER 2. GIT GUTS

was returned from the write-tree command. You can check the type of this
object, confirming it is a tree, and then look at its content to see that the
--cacheinfo we used above has been captured.

bash

1 git cat-file -t b7e8
2 git cat-file -p b7e8

git cat-file -t b7e8

1 tree

git cat-file -p b7e8

1 100644 blob 83baae61804e65cc73a7201a7252750c76066a30
file1.txt

C

C

The second field of this tree record blob is telling us that the record refers
to an object of type ‘blob’. Why blob and not object? The object directory
contains both file content (blob) and tree objects (which we will shortly see as
analogous to directories in the workspace). In other words, blobs and trees are
both objects. It is therefore fine to use the term ‘object’ when the context makes
clear the type of object we are talking about (or we are talking collectively
about any type of object). I will continue to use ‘object’ unless it is important
to use a more specific type.

We can add multiple objects to our index and these can be a mix of existing
repository objects and new files added from our working area.

bash

1 echo 'Another file' > another_file.txt
2 git update-index --add another_file.txt
3 git ls-files --stage

git ls-files --stage

1 100644 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f 0
another_file.txt

C

C

2 100644 83baae61804e65cc73a7201a7252750c76066a30 0
file1.txt

C

C

Here we are using update-index directly on the file another_file.txt.
This will create a new object in the repository holding the content of another_file.txt
at the time this update-index is run and then create the entry in the in-
dex to relate the filename and the file mode to this object. We cannot use
--cacheinfo here because the object does not exist within the repository un-

2.3. TREES 15

til we run the update-index. We need the --add option so that update-index
will accept new files (files that have no existing index entry) into the index.

Some time back we created a new object containing the text ‘version 2’.
This object was assigned the hash 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a
when we created it with hash-object -w. We want to add this object to our
index.

bash

1 git update-index --cacheinfo 100644
1f7a7a472abf3dd9643fd615f6da379c4acb3e3a file1.txt

C

C

2 git ls-files --stage

git ls-files --stage

1 100644 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f 0
another_file.txt

C

C

2 100644 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a 0
file1.txt

C

C

Notice that the index is modified so that the file1.txt entry now refers
to object 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a.

Why was a new line not created in the index? Note the absence of the
--add option. We are modifying the index entry associated with the name
file1.txt, not adding a new entry. The index is a mapping between objects
in the Git repository and files in the workspace and workspace files must be
uniquely identified filename. There can only be a one to one mapping from
filename to object in the index (a filename can only refer to one object).

It is fine for the index to have a one to many mapping from object to file-
name (one object can be referred to by many filenames). This can be illustrated
by adding a second index entry referring to the object 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a
but using a different filename.

bash

1 git update-index --add --cacheinfo 100644
1f7a7a472abf3dd9643fd615f6da379c4acb3e3a filerX.txt

C

C

2 git ls-files --stage

git ls-files --stage

1 100644 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f 0
another_file.txt

C

C

2 100644 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a 0
file1.txt

C

C

3 100644 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a 0
fileX.txt

C

C

16 CHAPTER 2. GIT GUTS

What does this represent?
Work through what we have learned so far. The object 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

contains the data ‘version 2’. The index shows the mapping between the
data and the files in the workspace. So both file1.txt and fileX.txt in the
workspace are to have the same content (that from object 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a).

We don’t really want this double mapping (interesting as it is), so we remove
it from the index using the --remove option to the update-index command.

bash

1 git update-index --remove fileX.txt
2 git ls-files --stage

git ls-files --stage

1 100644 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f 0
another_file.txt

C

C

2 100644 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a 0
file1.txt

C

C

We now create another tree object.

bash

1 git write-tree

So far we have created some basic blob and tree objects, but we have not
yet dealt with directories. Or have we?

A directory is essentially a container holding files and other directories.
Sounds familiar? The tree object we just created is a list of blobs related to
file names. Can we similarly relate a directory name with a tree object and
include it in another tree object?

Create a directory and a new file in that directory.

bash

1 mkdir dir1
2 echo 'version 1' > dir1/file11.txt

We now add this new file to the index.

bash

1 git update-index --add dir1/file11.txt

If we now look at our index we find that this has simply added an entry
to the index with the path dir1/file11.txt rather than a simple filename.
We have discovered that the index maps files by pathname rather than simply
their file name. These pathnames are relative to the root of our working area.

2.3. TREES 17

bash

1 git ls-files -s

1 100644 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f 0
another_file.txt

C

C

2 100644 83baae61804e65cc73a7201a7252750c76066a30 0
dir1/file11.txt

C

C

3 100644 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a 0
file1.txt

C

C

2.3.1 Progress review: blobs and trees

Let’s review the situation we now have.
We have some blobs in the .git/objects store holding various data. We

have two tree objects in the .git/objects store (b7e8fac7e3e35d93d39d2fa2260868f025a9efb4)
that relates 83baae to the name file1.txt and 349fa0b7f3252dbe6989c2e8156803b3265a78e0
that relates 1f7a7a to file1.txt and b0b9fc to another_file.txt). We have
a .git/index file containing various mappings between blobs and filenames
(which we just listed out above).

We can list all the objects in .git/objects using cat-file with the
--batch-all-objects and --batch-check options.

bash

1 git cat-file --batch-all-objects --batch-check

git cat-file --batch-all-objects --batch-check

1 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10
2 349fa0b7f3252dbe6989c2e8156803b3265a78e0 tree 81
3 7ab4ff63b2ea4c2c3ff89ee972bc42988a4b8472 blob 11
4 83baae61804e65cc73a7201a7252750c76066a30 blob 10
5 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f blob 13
6 b7e8fac7e3e35d93d39d2fa2260868f025a9efb4 tree 37

We can now see what happens when we add sub-directories to our object
store. Remember that our index has a new dir1/file11.txt path mapping
so we are expecting write-tree to account for this in our repository.

bash

1 git write-tree
2 git cat-file --batch-all-objects --batch-check

18 CHAPTER 2. GIT GUTS

git cat-file --batch-all-objects --batch-check

1 0139f016af84acd889e2f707ef9eca2140e0222e tree 112
2 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10
3 337f3832b1bce2d8f364e99965c8519a3eb9dc6c tree 38
4 349fa0b7f3252dbe6989c2e8156803b3265a78e0 tree 81
5 7ab4ff63b2ea4c2c3ff89ee972bc42988a4b8472 blob 11
6 83baae61804e65cc73a7201a7252750c76066a30 blob 10
7 b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f blob 13
8 b7e8fac7e3e35d93d39d2fa2260868f025a9efb4 tree 37

b7e8fa

tree

file1.txt 83baae

blob

version 1

0139f0

tree

another_file.txt
dir1
file1.txt

337f38

tree

file11.txt

b0b9fc
blob

Another file

7ab4ff
blob

not a file

1f7a7a

blob

version 2

Figure 2.5: Hierarchy of tree objects

We have added two new tree objects, 337f38 and 0139f0. Inspecting these
we can see what has happened.

bash

1 git cat-file -p 337f38
2 git cat-file -p 0139f0

git cat-file -p 337f38

1 100644 blob 83baae61804e65cc73a7201a7252750c76066a30
file11.txt

C

C

2.4. COMMITS 19

git cat-file -p 0139f0

1 100644 blob b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f
another_file.txt

C

C

2 040000 tree 337f3832b1bce2d8f364e99965c8519a3eb9dc6c
dir1

C

C

3 100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a
file1.txt

C

C

The first (337f38) represents the content of the dir1 directory, in this
instance just the mapping of 83baae to the file name file11.txt.

The second (0139f0) represent the content of our root directory. The in-
teresting entry being the tree object referenced on line 2 and mapped to the
name dir1.

From this short exercise we can make a few observations.

1. The index maps blobs to file paths (not simply file names).

2. The index does not map tree objects.

3. Tree objects are created as required whenever a write-tree is executed.

4. Tree objects are mapped to names by other tree objects.

5. Tree objects form a directed graph representing a directory structure.

6. The root Tree object has no name (since names are mapped by tree
objects and, by definition, the root tree object is not itself a part of a
parent tree object).

We have now shown how Git stores data in blobs. Names are mapped to
those blobs by tree objects. Tree objects can contain other tree objects and
map them to names, allowing us to store directories3.

Now that we can store a basic file structure it is time to consider how Git
stores the history of changes to files.

2.4 commits

Watch “Creating a history with commits” on Vimeo

Tree objects effectively capture and freeze a hierarchical set of files and
directories. Put another way, a tree object is a snapshot in time of a set of
blob to file path mappings. This is useful to us when we want to capture a
history, all we need do is capture tree objects representing the start and end of

3Note that we cannot create an empty tree object. This is the reason Git cannot store
empty directories.

https://player.vimeo.com/video/530307795

20 CHAPTER 2. GIT GUTS

any operation and then somehow tell Git that the first snapshot precedes the
second. We can now look at these two snapshots as a history of the files and
directories captured by the tree objects.

We already have two snapshots we can use to start our history.

bash

1 git ls-tree -r b7e8fa
2 git ls-tree -r 0139f0

I’ve used the -r option to list the tree object recursively. This has no effect
on the first tree but the second tree shows blob object 83baae mapped to the
file path dir1/file11.txt whereas without the -r option we would see only
the tree object 337f38 mapped to directory dir1 (as above).

git ls-tree -r b7e8fa

1 100644 blob 83baae61804e65cc73a7201a7252750c76066a30
file1.txt

C

C

git ls-tree -r 0139f0

1 100644 blob b0b9fc8f6cc2f8f110306ed7f6d1ce079541b41f
another_file.txt

C

C

2 100644 blob 83baae61804e65cc73a7201a7252750c76066a30
dir1/file11.txt

C

C

3 100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a
file1.txt

C

C

The first (b7e8fa) tree contains only file1.txt. In the second we have
added file another_file.txt, the directory dir1 and within that the file
file11.txt (file1.txt has different content to that referred to in b7e8fa,
we know this because it is mapped to a different blob (1f7a7a) rather than
83baae).

So Git provides a simple mechanism for showing that tree b7e8fa is histor-
ically before tree 0139f0? Yes . . . and no. Although we know that we added
and modified the files between creating tree objects b7e8fa and 0139f0 there
is nothing reflecting this history. We could just as easily claim that 0139f0
was created first and then we modified file1.txt and removed dir1 and it’s
content, the results would be the same.

To create a history we must first create a new type of object, the commit ob-
ject. It will not surprise you that these objects are also stored under .git/objects.

Commit objects contain special metadata (that is data about data, in
this case data about a tree object). To create a commit object we use the
commit-tree command.

2.4. COMMITS 21

bash

1 git commit-tree -m "First commit" b7e8fa

As with other commands that create new objects the commit-tree com-
mand returns the hash of the new commit object. This is the first time you
will notice your commit will have a different hash to my commit object. Pause
for a second and consider why this might be.

b7e8fa

tree

file1.txt 83baae

blob

version 1

0139f0

tree

another_file.txt
dir1
file1.txt

337f38
tree

file11.txt

b0b9fc

blob

Another file

7ab4ff

blob

not a file

1f7a7a

blob

version 2

tree
f871b5

com

Figure 2.6: Single commit

We can now inspect this object, first confirming its type and then pretty
printing it.

bash

1 git cat-file -t f871b5
2 git cat-file -p f871b5

git cat-file -t f871b5

1 commit

git cat-file -p f871b5

1 tree b7e8fac7e3e35d93d39d2fa2260868f025a9efb4
2 author vagrant <vagrant@debian-10.7-amd64> 1615399633

+0000
C

C

3 committer vagrant <vagrant@debian-10.7-amd64> 1615399633
+0000

C

C

4

5 First commit

22 CHAPTER 2. GIT GUTS

And here we see another difference between what you see and what I see.
What causes this difference? After all we have, so far, started with the same
setup and created the same objects in the repository. Compare closely the
output of cat-file. At the end of the lines starting author and committer
are two numbers, these are timestamps and since you and I created our commit
objects at different times we have different timestamps and consequently these
commit objects have different hashes.

We can demonstrate this clearly by repeating the commit-tree with no
changes.

bash

1 git commit-tree -m "First commit" b7e8fa

Git returns a different hash. If we compare the two commit objects (re-
membering that your commit objects’ hashes will be different to mine!), we see
they differ only in the timestamps recorded.

bash

1 diff <(git cat-file -p f871b5) <(git cat-file -p e3004b)

We now have two commit objects, but they are not very interesting as they
refer to the same tree object (and hence the same ’version 1’ of file1.txt).
Let’s create some more interesting commit objects.

We previously created a tree object (0139f0) that captured the files file1.txt
(’version 2’), another_file.txt, and dir1/file11.txt. We now what to cre-
ate a history in which this configuration of files and directories follows from
the ’version 1’ file1.txt.

bash

1 git commit-tree -m "Second commit" -p f871b5 0139f0

In this commit-tree we added the -p option to indicate that commit object
f871b5 is the parent of the commit object we are creating for tree object
0139f9. As before we can examine the new commit object (in my case 0715e7)
with the cat-file command.

bash

1 git cat-file -p 0715e7

2.4. COMMITS 23

b7e8fa

tree

file1.txt 83baae

blob

version 1

0139f0

tree

another_file.txt
dir1
file1.txt

337f38

tree

file11.txt

b0b9fc

blob

Another file

7ab4ff

blob

not a file

1f7a7a

blob

version 2

tree
f871b5

com

tree
0715e7

com

parent

Figure 2.7: Commit with parent

1 tree 0139f016af84acd889e2f707ef9eca2140e0222e
2 parent f871b58596491e15ee1da91eaf0a4a6c1da3e573
3 author vagrant <vagrant@debian-10.7-amd64> 1615399872

+0000
C

C

4 committer vagrant <vagrant@debian-10.7-amd64> 1615399872
+0000

C

C

5

6 Second commit

On line 2 we see that this commit has a parent (f871b5).
Now let’s quickly create one more commit. First we create a new version

of file1.txt, then create a new tree object, and finally a new commit.

bash

1 echo 'version 3' > file1.txt
2 git update-index file1.txt
3 git write-tree
4 git commit-tree -m "Third commit" -p 0715e7 fd97ab

2.4.1 Progress review: blobs, trees, and commits

Let us review the content of our objects store4. We have create three tree
objects using the write-tree command. These were:

1. Version one of file1.txt on its own.

4If you want to be one of the cool kids you can point out that this structure (a tree in
which each node hashes its children) is a Merkle tree.

https://en.wikipedia.org/wiki/Merkle_tree

24 CHAPTER 2. GIT GUTS

b7e8fa

tree

file1.txt 83baae

blob

version 1

0139f0

tree

another_file.txt
dir1
file1.txt

337f38

tree

file11.txt

b0b9fc

blob

Another file

7ab4ff

blob

not a file

1f7a7a

blob
version 2

tree
f871b5

com

tree
0715e7

com

parent

fd97ab

tree

another_file.txt
dir1
file1.txt 7170a5

blob

version 3

tree
e27aaa

com

parent

Figure 2.8: Three commit history

2. Adding another_file.txt alongside version one of dir1/file11.txt
and updating file1.txt to version two.

3. Update file1.txt to version 3

To create a version chain of these three tree objects we use three commit-tree
commands. The first commit object has no parent as it is the first entry, it
contains the four pieces of data:

1. tree—the hash of the tree object to which this commit refers.

2. author—a record of the author’s name and email (the person who write
the changes in the tree object), along with the time the commit was
authored

3. committer—a record of the committer (the user who actually executed
the commit-tree)

4. A blank line, followed by the text of any comment we want to associate
with the commit (in these example, supplied by the -m option to the
commit-tree command).

2.4. COMMITS 25

Author versus Committer

Why the two entries ‘author’ and ‘committer’?
The ‘author’ of a change is the individual who edited the files making
up the change.
The ‘committer’ is the user who created the commit object.
In private use these two field normally contain the same information.
The same user created the commit and makes the changes. However,
suppose a user submits a change as a patch file using e-mail? That
person is the author of the change but not the person who puts those
changes into the Git repository. This is why there is a distinction be-
tween the ‘author’ and ‘committer’.

The second commit specifies the first commit object (the hash returned
by the first commit-tree). Looking at this commit object you can see one
additional piece of data over the initial commit:

1. parent—the hash reference to parent commit object.

Finally we created a third commit object referencing the second as its par-
ent.

The entire chain we just created can be displayed using the log command;
the hash e27aa being the hash of the last (third) commit object we just created.
The --stat option shows summary statistics of each commit and the --patch
shows the changes to the files in each commit.

bash

1 git log --stat --patch e27aaa

26 CHAPTER 2. GIT GUTS

1 commit e27aaa8c158e6f261f4c03aaaf173a149ad61d81
2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:13:55 2021 +0000
4

5 Third commit
6 ---
7 file1.txt | 2 +-
8 1 file changed, 1 insertion(+), 1 deletion(-)
9

10 diff --git a/file1.txt b/file1.txt
11 index 1f7a7a4..7170a52 100644
12 --- a/file1.txt
13 +++ b/file1.txt
14 @@ -1 +1 @@
15 -version 2
16 +version 3
17

18 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
19 Author: vagrant <vagrant@debian-10.7-amd64>
20 Date: Wed Mar 10 18:11:12 2021 +0000
21

22 Second commit
23 ---
24 another_file.txt | 1 +
25 dir1/file11.txt | 1 +
26 file1.txt | 2 +-
27 3 files changed, 3 insertions(+), 1 deletion(-)
28

29 diff --git a/another_file.txt b/another_file.txt
30 new file mode 100644
31 index 0000000..b0b9fc8
32 --- /dev/null
33 +++ b/another_file.txt
34 @@ -0,0 +1 @@
35 +Another file
36 diff --git a/dir1/file11.txt b/dir1/file11.txt
37 new file mode 100644
38 index 0000000..83baae6
39 --- /dev/null
40 +++ b/dir1/file11.txt
41 @@ -0,0 +1 @@
42 +version 1
43 diff --git a/file1.txt b/file1.txt
44 index 83baae6..1f7a7a4 100644
45 --- a/file1.txt
46 +++ b/file1.txt
47 @@ -1 +1 @@
48 -version 1
49 +version 2
50

51 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
52 Author: vagrant <vagrant@debian-10.7-amd64>
53 Date: Wed Mar 10 18:07:13 2021 +0000
54

55 First commit
56 ---
57 file1.txt | 1 +
58 1 file changed, 1 insertion(+)
59

60 diff --git a/file1.txt b/file1.txt
61 new file mode 100644
62 index 0000000..83baae6
63 --- /dev/null
64 +++ b/file1.txt
65 @@ -0,0 +1 @@
66 +version 1

2.5. REFS 27

2.5 refs

Watch “Human readable references” on Vimeo

So far we have:

1. Created some hash objects.

2. Created some tree objects that associate file pathname and mode with
one or more hash objects

3. Created some commit objects that associate metadata with tree objects
and allows us to relate tree objects in a graph which is typically in-
terpreted as a version graph where each parent is an earlier version (it
should be noted that Git itself is completely unaware of this interpreta-
tion though).

So far, so good but it is still a bit cumbersome to use. For one thing we
have to remember which commit object we last created so that we can use it
as the parent for our next commit. We have seen this problem above, not only
when using commit-tree but also using the log command where we needed to
know the hash of the most recent commit object in our history.

refs (or ‘references’) to the rescue. A ref is a more human readable way to
refer a commit object hash.

bash

1 tree -a .git/refs

tree -a .git/refs

1 .git/refs
2 heads
3 tags
4

5 2 directories, 0 files

The refs directory contains two sub-directories:

• heads—contains references to the head, or latest, commit object we want
to name.

• tags—contains references to any object we want to give a human readable
name.

https://player.vimeo.com/video/539550943

28 CHAPTER 2. GIT GUTS

We can set the head of our master branch (the default branch5 on which
Git works, more on branches later) to our latest commit object:

bash

1 echo "e27aaa8c158e6f261f4c03aaaf173a149ad61d81" >
.git/refs/heads/master

C

C

2 git log --stat

We have to use the full hash when writing to the .git/refs/heads/master
file.

git log --stat

1 commit e27aaa8c158e6f261f4c03aaaf173a149ad61d81 (HEAD ->
master)

C

C

2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:13:55 2021 +0000
4

5 Third commit
6

7 file1.txt | 2 +-
8 1 file changed, 1 insertion(+), 1 deletion(-)
9

10 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
11 Author: vagrant <vagrant@debian-10.7-amd64>
12 Date: Wed Mar 10 18:11:12 2021 +0000
13

14 Second commit
15

16 another_file.txt | 1 +
17 dir1/file11.txt | 1 +
18 file1.txt | 2 +-
19 3 files changed, 3 insertions(+), 1 deletion(-)
20

21 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
22 Author: vagrant <vagrant@debian-10.7-amd64>
23 Date: Wed Mar 10 18:07:13 2021 +0000
24

25 First commit
26

27 file1.txt | 1 +
28 1 file changed, 1 insertion(+)

5I tend to freely use ‘default branch’ to mean the ‘current default branch’ and ‘the branch
Git will use absent any other branches’. This is lazy but I think context makes clear which
is implied.

2.5. REFS 29

Issuing the log command without specifying the exact commit we are inter-
ested in causes Git to look up the refs entry of our current branch (actually it
looks in .git/HEAD for the ‘latest’ commit and since we have not moved from
the default branch this will be master, we look at .git/HEAD again in §2.6.1.)

bash

1 cat .git/HEAD
2 cat .git/refs/heads/master

cat .git/HEAD

1 ref: refs/heads/master

cat .git/refs/head/master

1 e27aaa8c158e6f261f4c03aaaf173a149ad61d81

The master file in the .git/refs/heads directory contains the hash of the
commit object we want to call the ‘head’ of our master branch.

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/heads/masterref

HEAD

ref

Figure 2.9: HEAD dereferencing

Editing refs files directly is not ideal (not least because we can’t abbreviate
the hash) so Git provides the update-ref command.

30 CHAPTER 2. GIT GUTS

bash

1 git update-ref refs/heads/master 0715e7
2 git log --stat

git log --stat

1 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:11:12 2021 +0000
4

5 Second commit
6

7 another_file.txt | 1 +
8 dir1/file11.txt | 1 +
9 file1.txt | 2 +-

10 3 files changed, 3 insertions(+), 1 deletion(-)
11

12 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
13 Author: vagrant <vagrant@debian-10.7-amd64>
14 Date: Wed Mar 10 18:07:13 2021 +0000
15

16 First commit
17

18 file1.txt | 1 +
19 1 file changed, 1 insertion(+)

After we update the reference to the penultimate commit in our repository
(0715e7) we curtail the log at that point and Git will treat that commit as the
latest on the master branch.

We can easily restore the head of master using the update-ref command.

bash

1 git update-ref refs/heads/master e27aaa
2 git log --stat

2.5. REFS 31

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/heads/masterref

HEAD

ref

Figure 2.10: Penultimate change

git log --stat

1 commit e27aaa8c158e6f261f4c03aaaf173a149ad61d81 (HEAD ->
master)

C

C

2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:13:55 2021 +0000
4

5 Third commit
6

7 file1.txt | 2 +-
8 1 file changed, 1 insertion(+), 1 deletion(-)
9

10 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
11 Author: vagrant <vagrant@debian-10.7-amd64>
12 Date: Wed Mar 10 18:11:12 2021 +0000
13

14 Second commit
15

16 another_file.txt | 1 +
17 dir1/file11.txt | 1 +
18 file1.txt | 2 +-
19 3 files changed, 3 insertions(+), 1 deletion(-)
20

21 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
22 Author: vagrant <vagrant@debian-10.7-amd64>
23 Date: Wed Mar 10 18:07:13 2021 +0000
24

25 First commit
26

27 file1.txt | 1 +
28 1 file changed, 1 insertion(+)

32 CHAPTER 2. GIT GUTS

The update-ref command is doing several things for us. Firstly, it allows
us to use short hashes (phew!), it checks that the hash we provide is valid
too. Secondly you may have notices new directories and files appearing in the
repository.

bash

1 tree -a

tree -a (truncated)

1 .git
2 branches
3 config
4 description
5 HEAD
6 hooks
7 index
8 info
9 exclude

10 logs
11 HEAD
12 refs
13 heads
14 master

The new logs directory contains two new files; HEAD and refs/heads/master.
These contain a record of each time we modify a reference using update-ref.
Each log entry records the old hash, the new hash, the user who made the
change, and a time stamp for when the change was made. These ‘logs of ref
changes’ can be viewed (and manipulated) using the reflog command.

bash

1 git reflog

git reflog

1 e27aaa8 (HEAD -> master) HEAD@{0}:
2 0715e70 HEAD@{1}:

This shows the history of changes we made to the master branch refs/heads/master
using update-ref. As with the log command, by default, more recent changes
are shown first (reverse chronological order).

The output may look like gibberish but it’s actually simple enough. Let’s
break down the first line.

• e27aaa8—This is the new hash we set.

2.6. REFERENCES (BRANCHES AND TAGS) 33

• (HEAD -> master)—This tells us that this entry is about the HEAD ref-
erence and this currently refers to the master branch. (Actually, HEAD is
an indirect reference that points us to the ‘latest commit on the active
branch’, more on this shortly.)

• HEAD@\{0\}—This is a commit reference, specifically is says that we are
referring to the ‘zeroth’ (latest) change relative to the ‘HEAD’ reference.

Okay, we should now be able to read the simpler second line with ease.

• 0715e70—The hash we set when this change was made.

• HEAD@\{1\}—This line refers to the ‘first’ change to HEAD, counting back
from the current value (HEAD@\{0\}).

2.5.1 Remote refs

There is one more type of ref we need to discuss, the ‘remote refs’. These
are read only refs in the sense that one does not manipulate them directly but
they are maintained through interaction with remote repositories. As these
have such a specialised use I’m going to leave a complete discussion to §5.1,
after we have discussed working with multiple repositories in Chapter 5.

2.6 References (branches and tags)

Watch “Branches and tags” on Vimeo

Using the head refs .git/refs/heads we can create named branches. In
fact we have done so already, .git/refs/heads/master holds the reference to
the latest commit (head) of the master branch.

There is nothing special about the master branch other than convention
and that Git treats this as the default branch name in a new repository6.

We can create a new branch very easily, we just create a new .git/refs/heads
entry.

bash

1 git update-ref refs/heads/test_branch 0715e7
2 git log --stat test_branch
3 git log --stat

6In mid-2020 Git 2.8.0 provided the ability to change the default branch name (using
the configuration setting init.defaultBranch). In October 2020 GitHub started using main
rather than master in new repositories, GitLab announced a similar change in March 2021.
This in response to sensitivity about the use of ‘master’ in all forms due to its tangential
association with slavery. Etymology is not the strong suit of the over-sensitive. Thankfully
the use of master is not forbidden so this change can be largely ignored.

https://player.vimeo.com/video/543052981
https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main/
https://about.gitlab.com/blog/2021/03/10/new-git-default-branch-name/
https://www.etymonline.com/word/master

34 CHAPTER 2. GIT GUTS

git log --stat test\char `_branch

1 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:11:12 2021 +0000
4

5 Second commit
6

7 another_file.txt | 1 +
8 dir1/file11.txt | 1 +
9 file1.txt | 2 +-

10 3 files changed, 3 insertions(+), 1 deletion(-)
11

12 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
13 Author: vagrant <vagrant@debian-10.7-amd64>
14 Date: Wed Mar 10 18:07:13 2021 +0000
15

16 First commit
17

18 file1.txt | 1 +
19 1 file changed, 1 insertion(+)

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/heads/masterref

HEAD

ref

refs/heads/test_branchref

Figure 2.11: New test_branch

We create the new branch named test_branch from the second commit
by creating the new refs/heads/test_branch. Now when we log that branch

2.6. REFERENCES (BRANCHES AND TAGS) 35

we see only the first and second commit, while logging the current default
(‘master’) we see all three commits.

git log --stat

1 commit e27aaa8c158e6f261f4c03aaaf173a149ad61d81 (HEAD ->
master)

C

C

2 Author: vagrant <vagrant@debian-10.7-amd64>
3 Date: Wed Mar 10 18:13:55 2021 +0000
4

5 Third commit
6

7 file1.txt | 2 +-
8 1 file changed, 1 insertion(+), 1 deletion(-)
9

10 commit 0715e707b906d30c9e395448ddc9e96acd89d5f7
11 Author: vagrant <vagrant@debian-10.7-amd64>
12 Date: Wed Mar 10 18:11:12 2021 +0000
13

14 Second commit
15

16 another_file.txt | 1 +
17 dir1/file11.txt | 1 +
18 file1.txt | 2 +-
19 3 files changed, 3 insertions(+), 1 deletion(-)
20

21 commit f871b58596491e15ee1da91eaf0a4a6c1da3e573
22 Author: vagrant <vagrant@debian-10.7-amd64>
23 Date: Wed Mar 10 18:07:13 2021 +0000
24

25 First commit
26

27 file1.txt | 1 +
28 1 file changed, 1 insertion(+)

2.6.1 HEAD

How does Git know that our currently active branch is master? There is a
special file in .git called HEAD (we saw this in §2.5) that tells Git where the
current default head commit is located. The HEAD therefore indicates which
commit object will be the parent to the next commit object created. In this
way Git will add the next commit object to the end of the currently active
branch.

36 CHAPTER 2. GIT GUTS

bash

1 cat .git/HEAD
2 cat .git/refs/heads/master

cat .git/HEAD

1 ref: refs/heads/master

cat .git/refs/heads/master

1 e27aaa8c158e6f261f4c03aaaf173a149ad61d81

Normally, as in this case, HEAD is an indirect reference to one of the refs/heads
files, which is in turn a reference to the actual commit hash that we are to use
as the current head (the current situation is illustrated in Figure 2.9).

We can change the branch to which HEAD refers (and consequently the
branch on which we are working).

bash

1 git log --oneline
2 echo "ref: refs/heads/test_branch" > .git/HEAD
3 git log --oneline

I’ve switched to using the --oneline option on log to keep the output
short (I don’t think outputting the entire --stat output each time is adding
any value here.).

git log --oneline

1 e27aaa8 (HEAD -> master) Third commit
2 0715e70 (test_branch) Second commit
3 f871b59 First commit

git log --oneline

1 0715e70 (HEAD -> test_branch) Second commit
2 f871b59 First commit

Before the change log outputs the master branch (HEAD -> master), after
changing the content of .git/HEAD log outputs the test_branch (HEAD -> test_branch),
we have effectively changed the default branch by changing the ref to which
HEAD refers.

As with changing refs/heads files, manually editing the HEAD file is not
ideal and Git provides the symbolic-ref command to make this safer.

2.6. REFERENCES (BRANCHES AND TAGS) 37

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/heads/masterref

refs/heads/test_branchref

HEAD

ref

Figure 2.12: Shifting to the test_branch

bash

1 git symbolic-ref HEAD
2 git log --oneline
3 git symbolic-ref HEAD refs/heads/master
4 git symbolic-ref HEAD
5 git log --oneline

git symbolic-ref HEAD

1 refs/heads/test_branch

git log --oneline

1 0715e70 (HEAD -> test_branch) Second commit
2 f871b59 First commit

git symbolic-ref HEAD

1 refs/heads/master

38 CHAPTER 2. GIT GUTS

git log --oneline

1 e27aaa8 (HEAD -> master) Third commit
2 0715e70 (test_branch) Second commit
3 f871b59 First commit

First we view the current value of the symbolic reference HEAD, then we
change that reference; note that we specify the path of the actual ref file
(refs/head/master).

2.6.1.1 Detached HEAD

You may occasionally encounter a ‘detached HEAD’ error. This seems to cause
much confusion online but is actually a very simple issue.

In some circumstances the HEAD symbolic reference will contain a hash value
directly (i.e. not a reference to one of the refs/heads). This can arise for a
number of reasons, among which the most common are:

• checkout of a commit directly using its hash

• checkout of a remote (more on these later)

• checkout of a tag (which we look at next).

We examine checkout in detail in §??, in the following it is simply a way
to ask Git to ‘get’ a commit object’s content and, more importantly, update
the HEAD file.

bash

1 git checkout f871b5
2 git symbolic-ref HEAD
3 cat .git/HEAD

2.6. REFERENCES (BRANCHES AND TAGS) 39

git checkout f871b5

1 Note: checking out 'c1bf'.
2

3 You are in 'detached HEAD' state. You can look around,
make experimental

C

C

4 changes and commit them, and you can discard any commits
you make in this

C

C

5 state without impacting any branches by performing
another checkout.

C

C

6

7 If you want to create a new branch to retain commits you
create, you may

C

C

8 do so (now or later) by using -b with the checkout
command again. Example:

C

C

9

10 git checkout -b <new-branch-name>
11

12 HEAD is now at f871b59 First commit

Line 3 announces that we are in the ‘detached HEAD’ state.

git symbolic-ref HEAD

1 fatal: ref HEAD is not a symbolic ref

We cannot look at the ‘symbolic-ref’ because it is no longer there.

cat .git/HEAD

1 f871b597ef5160ab19556e42e8a5264d092ad2bc

In fact the .git/HEAD file contains only the hash of the commit we checked
out.

bash

1 git checkout 0715e70
2 git symbolic-ref HEAD

git checkout 0715e70

1 Previous HEAD position was f871b59 First commit
2 HEAD is now at 0715e70 Second commit

git symbolic-ref HEAD

1 fatal: ref HEAD is not a symbolic ref

40 CHAPTER 2. GIT GUTS

If we checkout the second commit directly (using its hash) we are simply in-
formed that we updated the hash and attempting to examine the symbolic-ref
still results in an error.

bash

1 git checkout test_branch
2 git symbolic-ref HEAD

git checkout test\char `_branch

1 Switched to branch 'test_branch'

git symbolic-ref HEAD

1 refs/heads/test_branch

Checking out the test_branch (which is the same commit but now re-
ferred to by the refs/heads/test_branch) we are ‘switched’ to that branch’s
HEAD (the very same commit is being checked out, but the reference is now a
symbolic-ref).

2.6.2 tags

It would be very useful to have a method of recalling a commit by name, for
example when we release versions of our project it would be good to be able
to say “this commit is version 1.0 of my project”. Fortunately Git has tag
references for just this purpose.

Tag references come in two types:

1. Lightweight—these tags are similar to the symbolic references used above,
they are simple records in the .git/refs/tags directory that point to
specific commit objects (much as we have just seen .git/refs/heads
do). Lightweight tags are typically private temporary names assigned by
the user.

2. Annotated—these are a new type of object, a tag object, that contains
some metadata associated with the tag. An entry is then made in the
.git/refs/tags directory referencing this tag object. Annotated tags
are used for more public permanent tags, such as release commits.

To create a new lightweight tag we use update-ref.

bash

1 git update-ref refs/tags/v1.0 f871b5
2 cat .git/refs/tags/v1.0

2.6. REFERENCES (BRANCHES AND TAGS) 41

cat .git/refs/tags/v1.0

1 f871b58596491e15ee1da91eaf0a4a6c1da3e573

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/tags/v1.0ref

Figure 2.13: Lightweight tag

We can now refer to the commit object with hash f871b5 using the tag name
v1.0. These lightweight tags are useful to assign ‘human readable’ names to
Git objects we may be interested in, but we can create an annotated tag that
includes additional information.

bash

1 git tag -a v2.0 0715e7 -m "The second version"
2 cat .git/refs/tags/v2.0
3 git cat-file -t v2.0
4 git cat-file -p v2.0

cat .git/refs/tags/v2.0

1 a7edafabd57c0a3dc7788d021359083ae31d3826

git cat-file -t v2.0

1 tag

42 CHAPTER 2. GIT GUTS

git cat-file -p v2.0

1 object 0715e707b906d30c9e395448ddc9e96acd89d5f7
2 type commit
3 tag v2.0
4 tagger vagrant <vagrant@debian-10.7-amd64> 1616259961

+0000
C

C

5

6 The second version

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/tags/v1.0ref

object

a7edaf
tagrefs/tags/v2.0ref

Figure 2.14: Annotated tag

Here we use the git tag command with the -a (for annotate) option to tag
commit object ac21f9 and add a comment with the -m option7. This creates a
new object of type tag. Unlike other commands that we have seen that create
objects, the tag command does not return the new object’s hash. This is not
a problem as the tag is now a proxy for that tag object’s hash. We can specify
either the hash or the new tag to the cat-file to examine the new tag object.
Looking inside that tag object we see that it is referencing the object ac21f9
(the one we tagged), this object is a commit object and the tag object is for
tag v2.0. The last text block is the comment provided in the -m option.

The fact that the tag tracks the type of the object being tagged should be
a clue that we can tag any object we like.

bash

1 git tag -a Meta v2.0 -m "Meta tagging dude"
2 git cat-file -p Meta

7The -a option is implied when -m is specified without -a,-s or -u, see man git-tag(1).

2.6. REFERENCES (BRANCHES AND TAGS) 43

git cat-file -p Meta

1 object a7edafabd57c0a3dc7788d021359083ae31d3826
2 type tag
3 tag Meta
4 tagger vagrant <vagrant@debian-10.7-amd64> 1616260030

+0000
C

C

5

6 Meta tagging dude

tree
f871b5

com

tree
0715e7

com

parent

tree
e27aaa

com

parent

refs/tags/v1.0ref
object

a7edaf
tagrefs/tags/v2.0ref

object

50945f

tagrefs/tags/Metaref

Figure 2.15: Annotated tag of a tag

Here we have created a tag (Meta) of a tag (v2.0). What is more Git will
do what you might expect, it follow this meta-tag down until an object of the
type expected by the command is found.

bash

1 git checkout master
2 git log --oneline
3 git log --oneline Meta

git checkout master

1 Switched to branch 'master'

git log --oneline

1 d17958c (HEAD -> master) Third commit
2 0715e70 (tag: v2.0, tag: Meta, test_branch) Second commit
3 f871b58 (tag: v1.0) First commit

Notice that the tags associate with each commit object are also shown.

44 CHAPTER 2. GIT GUTS

git log --oneline Meta

1 0715e70 (tag: v2.0, tag: Meta, test_branch) Second commit
2 f871b58 (tag: v1.0) First commit

Switching back to the master branch we can see the log history from the
master HEAD contains three commits. Specifying the Meta tag as the revi-
sion from which we want to log we see only the two commits from Meta—
even though Meta is actually a tag object (50945f) that refers to a tag object
(a7edaf) that finally refers to a commit object (0715e7).

Chapter 3

The Index

In Chapter 2 we introduced the index (held in the .git/index file1) and showed
the basic steps for adding files to the Git repository. This chapter discusses
the index in more detail.

3.1 The Git Triumvirate: the repo, the index, and the
work dir

Figure 3.1 and Figure 3.2 show the relationships between the three main ‘parts’
of Git.

The index contains a list relating hash and mode to file paths.

work dir: index: repo:

update-index

write-tree

Figure 3.1: The Git Triumvirate: in-flow

1We shall see this, as many things in these early chapters, a partial truth. The index
may be split by Git when dealing with large numbers of filename/objects mappings.

45

46 CHAPTER 3. THE INDEX

work dir: index: repo:

read-tree

checkout-index

Figure 3.2: The Git Triumvirate: out-flow

Author Note

Use the diff command to illustrate how the index works.
the index ‘marks’ all files considered ‘tracked’ in the workspace.
files in the workspace with no entry in the index are ‘untracked’
files in the index with hashes different to those in the workspace are
‘modified’
the index refers to ‘staged’ files. These have hashes (and blobs in the
objects store) that are NOT a part of the last commit tree (referened
by HEAD).
It is therefore possible to have a single file both ‘modified’ (its workspace
content differs from that referred to by the index) AND ‘staged’ (the
ndex refers to an blob that is not the one referenced in the HEAD
commit)

Chapter 4

Basic Local Workflow

We have investigated most of the key internal plumbing of Git in Chapter 2
and Chapter 3, in this chapter we look at a basic local Git workflow a devel-
oper might use and show how regular Git commands are interpreted into the
plumbing actions we’ve seen so far.

4.1 Create a new repository

In Chapter 2 and Chapter 3 we looked at the details of local Git repositories and
there interaction with a working area. In this chapter we look at the commands
you are more likely to use day-to-day when using Git. The commands used in
this chapter are so called ‘porcelain’ commands

4.2 Add a new file

4.2.1 How status leverages the index

l

4.3 Change a file

4.4 Add some directories and files

47

Chapter 5

Working With Other Repositories

So far we have focused on Git as a local tool but it’s real power comes from
being able to collaborate with others. In this chapter we look at how Git works
with other repositories.

5.1 Remote refs

49

	Contents
	Setup
	Required Tools

	Git Guts
	Git Repository
	blobs
	trees
	commits
	refs
	References (branches and tags)

	The Index
	The Git Triumvirate: the repo, the index, and the work dir

	Basic Local Workflow
	Create a new repository
	Add a new file
	Change a file
	Add some directories and files

	Working With Other Repositories
	Remote refs

