
Programming from Scratch

Mark Bools

March 14, 2022

Document ID: B000000001
Last Modified: 2022-11-10

Contents

Contents iii

1 How to. . . 1
1.1 . . . read this book . 1
1.2 . . . get the most from this book 2
1.3 . . .manage your workspace . 2

2 Setting Up Your Environment 7
2.1 VirtualBox . 7
2.2 Vagrant . 7
2.3 git . 8
2.4 Installing the host tools . 8
2.5 Setup Files for the Course . 8

3 What this book is about 11
3.1 Concepts Over Specifics . 11
3.2 Why Lua, Python, and Bash? 11
3.3 Art, Craft, or Science? . 12
3.4 Coding, Programming, and Software Engineering 12
3.5 The Essence of Programming 12

4 Core Concepts 13
4.1 Cohesion . 13
4.2 Coupling . 13
4.3 Abstraction . 13
4.4 Separation of Concerns . 13
4.5 Scope . 13
4.6 Context . 14
4.7 Contingency . 14
4.8 Entropy . 14
4.9 Parsimony . 14

iii

iv CONTENTS

I Coding 15

5 The Obligatory Hello World Program 19
5.1 Hello World in Bash . 20
5.2 Hello World in Lua . 23
5.3 Hello World in Python . 25
5.4 Hello World Review . 28

6 Variables 29
6.1 Python Variables . 30
6.2 Lua Variables . 31
6.3 Bash Variables . 32
6.4 Variables Review . 36

7 Special Variables 37
7.1 Command Line Arguments in Bash 37
7.2 Command Line Arguments in Lua 39
7.3 Command Line Arguments in Python 41
7.4 Special Variables Review . 42

8 Functions 43
8.1 Parameters and Arguments . 43
8.2 Functions in Python . 44

9 Flow Control 49

II Programming 51

10 Requirements 55

A vi 57

B Naming Things 60

Bibliography 61

Index 63

Chapter 1

How to. . .

This chapter offers some guidance on getting the most from this book.

1.1 . . . read this book

This book contains mistakes. Deliberate mistakes (and no doubt some mistakes
that I did not intend, that’s life). Sometimes we will do things more than
once. WTF? In most educational material we are presented with ‘perfect’
solutions, this is not realistic. The real world sucks. It changes constantly and
today’s ideal solution is okay but tomorrow the boss (or customer) decides new
technology is desirable how do we handle this? This is were some soft skills
may be required to persuade them to change their mind. Assuming we cannot
persuade them to change we need to plan and execute a migration from the
older solution to the new solution. Rather than avoid this sort of complexity
this course takes it head on.

Don’t have time to follow along from the start? No problem. At the start of
each section you will find details of how to create an appropriate environment
for that section (see §1.3). These ‘checkpoints’ also mean that if you mess
up you can simply throw your environment away, recreate it using the closest
checkpoint and continue with the course. In fact I encourage you to mess up
your environment. You will learn much more by ‘playing’. So set up and
environment, mess around with your own ideas and then, when you are ready
to do the next part of the course, either restore your own saved snapshots or
tear down the environment and build a new one using the provided checkpoint
code.

Having difficulty? No problem. Ask for help. Someone in the community
may help and since I am in the community I can also help clarify things. If
enough people are confused by the material then obviously I messed up and
need to rewrite that material to be more clear; it shall be done.

All of these books undergo constant maintenance (hopefully improvement),
my only goal is to make the material more clear and more accessible over time.

1

2 CHAPTER 1. HOW TO. . .

1.2 . . . get the most from this book

Do the examples! You’ll get much more from the material by following along
and investigating for yourself.

1.3 . . .manage your workspace

We are going to be doing a lot of practical work throughout this book so it is
worthwhile considering how we will manage our workspace.

A lot of this section will only make sense once you have read about the tools
Git, VirtualBox, and Vagrant but I’m assembling basic advice here to make it
easier to refer back to later.

1.3.1 Initial setup of your workspace

If you follow this book from page one to the end you should find your workspace
is always in sync with whatever the book is dealing with but practically many
of you will jump to sections of particular interest, skipping many sections. An-
ticipating this I’ve put in plenty of checkpoints. All of the material (including
checkpoints) is held in a single Git repository, so I recommend getting that
first.

Assuming you have installed Git (see §2.4) you can create your project
workspace.

bash

1 mkdir pfs
2 cd pfs
3 git clone --depth 1

https://gitlab.com/saltyvagrant.classes/pfs-material.git
course-material

C

C
C

C

4 mkdir classroom
5 mkdir archive

Your pfs workspace now contains three directories; course-material holds
all this book’s accompanying material, classroom is where you will follow along
with the course, and archive is where we will store various backup files.

Throughout this book I use the WSR directory1 to refer to the root of your
workspace. Any path that does not explicitly start from the WSR root as-
sumes you are following instructions from the last checkpoint and are relative
to whichever directory you should be in at the time.

1If you are using Microsoft Windows as your host you will need to convert ‘/‘ to ‘\‘
in paths whenever working in the host workspace. (It is precisely because of this sort of
“conversion” nonsense that we use the guest workspace most of the time.)

1.3. . . .MANAGE YOUR WORKSPACE 3

bash

1 cd WSR
2 cd WSR/classroom
3 cd ../course-material
4 cd WSR
5 cd classroom

Lines 1, 2, and 4 each start with WSR and are therefore not really relative to
your current working directory. You should take these to be absolute directories
rooted at your workspace root WSR. If your workspace is at /home/fred/xyz
then WSR/classroom should be read as /home/fred/xyz/classroom.

Line 3 is relative to your current working directory (in this example WSR/classroom)
and is referring to WSR/course-material (since the parent of WSR/classroom
it WSR and course-material is to be found directly under this directory).

Line 5 is again relative to your current working directory. As you just
moved to WSR (line 4) this refers to your classroom directory under that root.

1.3.2 Regular host workspace activities

There are a number of actions you may want to repeat throughout this course.
Rather than repeat them in full each time I present them here and simply refer
to these entries as necessary.

1.3.2.1 Checkpoint Classroom

You will need to checkpoint the classroom at least once, when you start the
course. If you get lost in the material you can reset your classroom to one
of the checkpoints in the book. This will clean up you classroom directory
ensuring you are ready to proceed with the book’s follow-along lessons.

1. Shutdown any running classroom Virtual Machine (VM)2 (if one is cur-
rently set up).

bash

1 cd WSR/classroom
2 vagrant halt

2. Backup your current classroom

bash

1 cd WSR
2 mv classroom archive/classroom_<date>

2A segmented presentation or emulation of a physical computer allowing multiple ‘guest’
machines to share the physical resources of the ‘host’ computer.

4 CHAPTER 1. HOW TO. . .

Replace <date> with the date of the backup (I recommend using a YYYMMDD
format as this sorts properly). For example, if today where December 3rd

2020 and I wanted to backup my classroom I would us the following3.

bash

1 cd WSR
2 mv classroom archive/classroom_20201203

3. Copy the relevant material from course-material

bash

1 cd WSR
2 cp course-material/<checkpoint>/ classroom

Replacing <checkpoint> with the name if the checkpoint from which you
want to proceed.

4. Start up the classroom

bash

1 cd WSR/classroom
2 vagrant up

This will start up any VM required for the classes.

1.3.2.2 Snapshot Classroom

If you are following the advice given above and ‘playing’ with your classrooms
then I suggest your take a snapshot of your environment just before you start
to play. This way you can quickly reset your classroom back you a point where
it is ready for you to continue following along with this course.

1. Follow along with this course.

2. Decide to ‘play’ for a while so take a snapshot.

bash

1 cd WSR/classroom
2 vagrant snapshot save class_<date>

Replace <date> with the date of the snapshot (I recommend using a
YYMMDD format as this sorts properly). For example, if today where De-
cember 3rd 2020 and I wanted to backup my classroom I would use the
following.

3Windows users should use move rather than mv

1.3. . . .MANAGE YOUR WORKSPACE 5

bash

1 cd WSR/classroom
2 vagrant snapshot save class_201203

3. Play with your classroom environment.

4. Decide to resume the course as described in this book.

5. Restore your classroom to the saved snapshot.

bash

1 cd WSR/classroom
2 vagrant snapshot restore class_<date>

Where <date> is the date of the snapshot to be restored. For example, to
restore the snapshot from December 3rd 2020 we created earlier I would
use the following.

bash

1 cd WSR/classroom
2 vagrant snapshot restore class_201203

6. Resume course.

One other useful snapshot command is list, this can be used to show your
previously saved snapshots (useful if, like me, your forget this sort of thing).

bash

1 cd WSR/classroom
2 vagrant snapshot list

1.3.2.3 Update material

This book, and consequently the accompanying material, is continually being
updated4. Most updates will be to the guest workspace consequently the host
workspace will rarely need updating, the following procedure will update your
host workspace and bring your guest systems up to date.

bash

1 cd WSR/course-material
2 git pull

4If you have downloaded the PDF version of this book then you should download the
latest version at the same time you update the course material, otherwise they will get out
of sync.

6 CHAPTER 1. HOW TO. . .

This will update the course material in the host workspace. If you have
created a classroom then you may need to re-copy the relevant course material
and re-provision the virtual machine.

bash

1 cd WSR
2 cp -rf course-material/<checkpoint>/* classroom
3 cd classroom
4 vagrant up --provision

Line 2 copies the relevant checkpoint files (obviously replacing <checkpoint>
with the actual checkpoint directory you want to use). Line 4 will update any
guest virtual machines (even if they already exist or are running).

Chapter 2

Setting Up Your Environment

In order that we are all seeing the same environment as we progress through
the following material you will need to install three applications onto your
computer (the host computer):

• VirtualBox

• vagrant

• git

Let’s take a look at each and discuss why they are required.

2.1 VirtualBox

VirtualBox is Oracle’s virtual machine application. This allows us to run a
virtual (guest) machine on our host computer. This in turn means that even if
you are running, for example, a Windows PC you will be able to run the Linux
servers required to follow along with this material.

Virtualisation also isolates our host computer from the machines that we
use. This has the advantage that no matter how badly we mess up the virtual
environment it will have no effect on our host computer and any change to our
host computer will have no effect on the virtual machines1.

2.2 Vagrant

Vagrant is HashiCorp’s command line tool for managing virtual machines. Va-
grant provided a simple consistent method for defining virtual machines as
code. This means we can all easily set up the same virtual machine environ-
ment without the need to rely on following complex set up instructions.

As with many topics covered in this course, there is a more detailed book
covering Vagrant Vagrant from Scratch[Boo20b].

1This is not 100% true, but close enough for our purposes here.

7

https://virtualbox.org
https://vagrantup.com

8 CHAPTER 2. SETTING UP YOUR ENVIRONMENT

2.3 git

Git has become the de facto standard in version control tools. Git is a powerful
tool, unfortunately its history means it has a bloated command line interface
that is often daunting and confusing to newcomers. Fear not! We will initially
use git commands to obtain some files and nothing more (so you can just type
the commands with no need to understand them) but as we progress we will
explain the git command line and if you are interested in learning Git in detail
there is a complete book on the topic Git from Scratch[Boo20a].

2.4 Installing the host tools

I have prepared some brief installation videos but to get the most up-to-date
instructions for installing these host tools follow the instructions on their web
sites.

2.5 Setup Files for the Course

Having installed the host tools, we now need to set up a virtual machine on
which we will do all of the work for this course. This approach removes many
problems relating to you and I working in different environments. For example,
some of you will have host computers running Microsoft Windows, others will
be running MacOS, and others Linux. In addition you will all be running
different versions and have different tools installed. By standardising on one
environment and one set of tools we remove these differences at the cost of
(perhaps) causing some issues with you not having favourite tools available.

To create the virtual class machine:

bash

1 mkdir pfs
2 cd pfs
3 clone --depth 1

https://gitlab.com/saltyvagrant.classes/programming
course-material

C

C
C

C

4 cp -rf course-material/pfs010cp001 classroom
5 cd classroom
6 vagrant up

The vagrant up may take a while (several minutes even on a powerful
machine) as it sets up the class machine for the first time. (The good news is
that this long wait is only necessary when setting up the class virtual machine.
Once set up the machine will be much quicker to start.)

Once you are returned to your command prompt you can connect to the
class machine using:

2.5. SETUP FILES FOR THE COURSE 9

bash

1 vagrant ssh

Assuming all is well you will be connected to the new virtual machine and
everything will be set up ready to start the course.

Chapter 3

What this book is about

This book is about learning to program. It is not about learning a par-
ticular style of programming, nor about learning a particular language, nor
about learning programming for a particular application, nor about a particu-
lar framework. It makes no promises that you will “learn programming in ten
minutes”.

Along the way I will illustrate programming concepts using three languages
(Lua, Python, and Bash) and we will look at many examples of code in different
styles and in different applications. But all of this is simply to aid the core
lessons on learning to program.

3.1 Concepts Over Specifics

As with all the ‘From Scratch’ series we focus on concepts rather than specifics.
Learning concepts is more productive as they can be applied in many situations
whereas learning specifics results in limited applicability.

3.2 Why Lua, Python, and Bash?

Lua is a simple language to learn but has all of the features needed to teach
the core programming skills. Lua is also a widely used embedded language, so
will likely be useful throughout your career.

Python is a wildly popular language. It has many more advanced features
and extensive libraries and frameworks which we will investigate in later parts
of the course. Python is also commonly used as a scripting language and as as
such is popular in DevOps, so this course supports the Devops from Scratch
material.

Bash is (almost) a de facto standard scripting language on Linux. If you
are aiming to do DevOps in a Linux environment you will need to know Bash
scripting.

11

12 CHAPTER 3. WHAT THIS BOOK IS ABOUT

3.3 Art, Craft, or Science?

The question if whether programming is an art, a craft, or a science has been
around as long as I can recall and will likely persist long after I am dead. It
is one of those water cooler conversations that can be both entertaining but
frustrating. It can also end friendships.

Ultimately it does not matter which camp you occupy. Just for the record,
I hold that programming is a craft, but software engineering (the development
of software systems) is a science.

3.4 Coding, Programming, and Software Engineering

Coding is easy. To write a set if instructions in a particular computer language
only requires a knowledge of that language’s syntax and semantics.

Programming requires more thought. We need to first consider the problem
we are being asked to solve, understand it well enough to formulate a solution,
translate that solution into an algorithm, and then to code that algorithm into
our chosen computer language. From this description we see that coding is
only the final (and arguably the least demanding) step.

Software engineering is a broader discipline requiring an understanding of
requirement solicitation, through system design, programming, to monitoring
and improving operational systems.

3.5 The Essence of Programming

Programming is the craft of translating requirements into code.
Most programming courses start by introducing basic programming con-

cepts, this course approaches programming from the perspective of translating
requirements into functional software, which is more like the approach you will
encounter in a professional environment.

Often, as a professional programmer you will operate on ‘informal’ require-
ments. Particularly if you are not programming as your primary function.
This course will show you how to capture these ‘informal’ requirements in a
more formal way, making them useful for controlling and documenting your
projects.

Chapter 4

Core Concepts

There are several concepts that crop up across the design and management of
IT that are so universally applicable that it is worth learning them regardless
of your specific interests.

This chapter introduces these core concepts.

4.1 Cohesion

Cohesion refers to how closely elements are related to one another. In generally
it is desirable to keep related things together and unrelated things separate.

4.2 Coupling

Coupling refers to how tightly to elements depend upon one another. In general
we want elements to be as independent as practicable.

4.3 Abstraction

Abstraction is the process of extracting the essential from the incidental.

4.4 Separation of Concerns

Separation of concerns is a general principal that employs abstraction to in-
creased cohesion and reduce coupling. The general idea is for elements to ‘mind
their own business’, performing a well bounded function (or set of factions).

4.5 Scope

Scope is the ‘range of applicability’ of an element.

13

14 CHAPTER 4. CORE CONCEPTS

4.6 Context

Everything operates in a context. Most of the time in IT the context is well
defined.

4.7 Contingency

Probably best summarised as ‘it depends’, contingency is the idea that we often
must account for things changing.

4.8 Entropy

‘Things degrade over time’, or perhaps more accurately ‘without concerted
effort to prevent it, thing get worse over time’. In software circles this is
colloquially known as ‘bit rot’, the idea that without specific work to avoid
it a software system’s structure will, over time, become more complex, more
difficult to maintain, and more prone to error.

4.9 Parsimony

The ‘KISS’ (Keep It Simple, Stupid) principle. Do not make things more
complex than required. The more parts a system has the more opportunity
the more things there are to go wrong, so it makes sense to use as few things
as possible.

Part I

Coding

15

4.9. PARSIMONY 17

In §3.4 I said that coding is perhaps the least important part of program-
ming, amounting to little more than translating an algorithm into the specific
computer language we have chosen. Why then is this chapter the first?

Although coding is trivial compared to the rest of the skills required for
programming it is still an essential step. In this chapter you will learn the core
coding skills you need. I stress ‘core’ because as you progress in learning to
code in particular languages you will find a lot of ‘syntactic sugar’ that will
make life easier but underlying this will be these core ideas.

Chapter 5

The Obligatory Hello World
Program

It is a staple of the ‘learning to code’ movement to first write a program that
prints the greeting ‘hello world’ to the screen, and who am I to fly in the face
of this custom?

Setup to Follow Along

If you have been following along so far your VM will already be in
the correct state for this lesson, but to be certain issue the following
command.

bash

1 cd ~
2 exercise 01.01

Before any code is written someone must have specified what the code
should do (the ‘requirements’). This has been done for you in these coding
exercises.

19

20 CHAPTER 5. THE OBLIGATORY HELLO WORLD PROGRAM

Requirements

All programs start with requirements. These are often informal when
writing code for private use but the larger the group involved in writing
the program the more formally we need to specify our requirements.
Throughout this book we will use an approach generally called Test
Driven Development (TDD)a. Although many examples used in this
book are trivial compared to real-world development (and the use of
formal requirements is overkill) this more disciplined approach is worth
developing early in your career as adjusting to it later is more difficult
(trust me, I took the hard route because the idea of TDD was developed
long after I learned to program.)
We will take a more detailed look at requirements in Chapter 10.

aA development methodology in which tests are written before the implementa-
tion code.

5.1 Hello World in Bash

bash

1 cd ~/bash
2 shellspec

The shellspec command runs a set of tests to confirm that the require-
ments have been met (these tests are often called ‘acceptance tests’). Later in
this course we will look at these tests and how, when, and why to write our
own tests.

5.1. HELLO WORLD IN BASH 21

shellspec

1 Running: /bin/sh [sh]
2 F
3

4 Examples:
5 1) convert shows greeting
6 When run script bin/convert
7

8 1.1) The output should equal Hello World!
9

10 expected: "Hello World!"
11 got: ""
12

13 # spec/bin/convert_spec.sh:4
14

15 1.2) WARNING: It exits with status non-zero but not
found expectation

C

C

16

17 status: 2
18

19 # spec/bin/convert_spec.sh:2-5
20

21 1.3) WARNING: There was output to stderr but not
found expectation

C

C

22

23 stderr: /bin/sh: 0: cannot open bin/convert:
No such file

C

C

24

25 # spec/bin/convert_spec.sh:2-5
26

27 Finished in 0.04 seconds (user 0.03 seconds, sys 0.01
seconds)

C

C

28 1 example, 1 failure
29

30

31 Failure examples / Errors: (Listed here affect your
suite's status)

C

C

32

33 shellspec spec/bin/convert_spec.sh:2 # 1) convert shows
greeting FAILED

C

C

The shellspec tests are currently failing, which should be unsurprising
as we have not yet written any code. The output from shellspec may be
confusing but don’t worry too much about it at the moment, the main things
to notice are on line 28 (telling us we ran one example and had one failure)

22 CHAPTER 5. THE OBLIGATORY HELLO WORLD PROGRAM

and line 23 (telling us that the test was trying to run the script bin/convert
but it could not since that script does not exist yet).

On line 5 we are told that shellspec was trying to confirm that the convert
script ‘shows a greeting’. Line 8 tells us that we are expecting the output to
be ‘Hello World!’.

Let’s now write the code to satisfy our requirement.

bash

1 mkdir bin
2 touch bin/convert
3 chmod +x bin/convert

These commands create the convert file and make it an executable (line
3). Now we will edit that file and print out our message.

bash

1 vi bin/convert

The vi editor

We are using the vi editor (if you know another editor on Linux feel
free to use it instead)—strictly we are using neovim, a more advanced
version of vi. vi can be a bit intimidating to new users but is worth
learning as it is installed on pretty much all Linux and Unix like systems.
For a full introduction to vi see [Boo22] but I provide a brief guide in
Appendix A.

Add the following, single line, to the bin/convert file and save the file.

bin/convert

1 echo "Hello World!"

Running bin/convert will print the message ‘Hello World!’ to the screen.

bash

1 bin/convert

bin/convert

1 Hello World!

If we now run our tests they pass.

5.2. HELLO WORLD IN LUA 23

bash

1 shellspec

shellspec

1 Running: /bin/sh [sh]
2 .
3

4 Finished in 0.04 seconds (user 0.04 seconds, sys 0.00
seconds)

C

C

5 1 example, 0 failures

The only interesting line in this output is line 5 where we are told we ran
one example with no failures.

Congratulations! You are now a coder. You have written a simple script
that outputs a message to the screen.

Sure, not the most exciting script in the world, but outputting information
to the screen is an essential part of many programs.

5.2 Hello World in Lua

bash

1 cd ~/lua
2 busted

The busted command runs a set of tests to confirm that the requirements
have been met (these tests are often called ‘acceptance tests’). Later in this
course we will look at these tests and how, when, and why to write our own
tests.

24 CHAPTER 5. THE OBLIGATORY HELLO WORLD PROGRAM

busted

1 lua: cannot open bin/convert.lua: No such file or
directory

C

C

2 -
3 0 successes / 1 failure / 0 errors / 0 pending : 0.0029

seconds
C

C

4

5 Failure → spec/convert_spec.lua @ 2
6 convert shows greeting
7 spec/convert_spec.lua:6: Expected objects to be the same.
8 Passed in:
9 (string) ''

10 Expected:
11 (string) 'Hello World!
12 '

The busted tests are currently failing, which should be unsurprising as we
have not yet written any code. The output from busted may be confusing but
don’t worry too much about it at the moment, the main things to notice are
on line 3 (telling us we had one failure) and line 1 (telling us that the test was
trying to run the script bin/convert.lua but it could not since that script
does not exist yet).

On line 6 we are told that busted was trying to confirm that the convert
script ‘shows a greeting’. Lines 7 through 12 tell us that we are expecting the
output to be ‘Hello World!’ (ending with a newline character).

Let’s now write the code to satisfy our requirement.

bash

1 mkdir bin
2 touch bin/convert.lua

These commands create the convert.lua file (unlike the bash script in §5.1
we don’t need to make this script executable as it will be passed to the lua
processor as a simple text file—we look at how to treat lua scripts as executables
later). Now we will edit that file and print out our message.

bash

1 vi bin/convert.lua

Add the following, single line, to the bin/convert.lua file and save the
file.

bin/convert.lua

1 print("Hello World!")

5.3. HELLO WORLD IN PYTHON 25

Running bin/convert.lua will print the message ‘Hello World!’ followed
by a new line to the screen.

bash

1 lua bin/convert.lua

bin/convert.lua

1 Hello World!

If we now run our tests they pass.

bash

1 busted

busted

1 o
2 1 success / 0 failures / 0 errors / 0 pending : 0.002722

seconds
C

C

The only interesting line in this output is line 2 where we are told we ran
one successful test with no failures.

Congratulations! You have written a simple lua script that outputs a mes-
sage to the screen.

5.3 Hello World in Python

bash

1 cd ~/python
2 poetry run pytest

The poetry run pytest command runs a set of tests to confirm that the
requirements have been met (these tests are often called ‘acceptance tests’).
Later in this course we will look at these tests and how, when, and why to
write our own tests.

26 CHAPTER 5. THE OBLIGATORY HELLO WORLD PROGRAM

poetry run pytest

1 Creating virtualenv convert-3AT6xhsc-py3.8 in
/home/vagrant/.cache/pypoetry/virtualenvs

C

C

2 ============================== test session starts
===============================

C

C

3 platform linux -- Python 3.9.2, pytest-7.1.2,
pluggy-1.0.0

C

C

4 rootdir: /home/vagrant/python
5 plugins: bdd-6.0.1
6 collected 1 item
7

8 tests/test_convert.py F
[100%]

C

C

9

10 ==================================== FAILURES
====================================

C

C

11 ________________________________ test_welcome_message

C

C

12

13 capfd = <_pytest.capture.CaptureFixture object at
0x7f80b8694e80>

C

C

14

15 def test_welcome_message(capfd):
16 > import convert
17 E ModuleNotFoundError: No module named 'convert'
18

19 tests/test_convert.py:3: ModuleNotFoundError
20 ============================= short test summary info

===========================
C

C

21 FAILED tests/test_convert.py::test_welcome_message -
ModuleNotFoundError: No module named 'convert'

C

C

22 =============================== 1 failed in 0.10s
===============================

C

C

The poetry run pytest tests are currently failing, which should be unsur-
prising as we have not yet written any code. The output from poetry run pytest
may be confusing but don’t worry too much about it at the moment, the main
things to notice are on line 22 (telling us we had one failure) and line 21 (telling
us that the problem is that the convert module does not yet exist).

In that line 21 message we see that the error is in test_welcome_message,
which gives us a clue as to what we are expected to provide.

Let’s now write the code to satisfy our requirement.

5.3. HELLO WORLD IN PYTHON 27

bash

1 vi convert.py

Add the following, single line, to the convert.py file and save the file.

convert.py

1 print("Hello World!")

Running poetry run python convert.py will print the message ‘Hello
World!’ followed by a new line to the screen1.

bash

1 poetry run python convert.py

poetry run python convert.py

1 Hello World!

If we now run our tests they pass.

bash

1 poetry run pytest

poetry run pytest

1 ============================== test session starts
===============================

C

C

2 platform linux -- Python 3.9.2, pytest-7.1.2,
pluggy-1.0.0

C

C

3 rootdir: /home/vagrant/python
4 plugins: bdd-6.0.1
5 collected 1 item
6

7 tests/test_convert.py .
[100%]

C

C

8

9 =============================== 1 passed in 0.03s
==

C

C

The only interesting line in this output is line 9 where we are told we ran
one passing test.

1In general we can run Python scripts using python convert.py. We use poetry run
which runs our script via poetry and this takes care of managing the python environment.
DON’T PANIC! All of this will be explained later.

28 CHAPTER 5. THE OBLIGATORY HELLO WORLD PROGRAM

Congratulations! You have written a simple python script that outputs a
message to the screen.

5.4 Hello World Review

We’ve seen three different approaches to coding a simple program. Each ap-
proach shared similar characteristics.

• We started with a failing test that provided a specification for our pro-
gram.

• We wrote a program to make the test pass (and thereby ensure our pro-
gram fulfilled the requirement).

• We reran our tests to make sure we had met the requirement.

You may also notice how similar the programs are to one another. They all
amount to a single ‘print’ statement. Although programming languages vary
considerably in detail, you will often find many common features. When learn-
ing, try to identify the core ideas as these often translate between languages.
‘print’ is a good example, many languages share the idea of printing to the
computers display and this is often achieved using a ‘print’ statement of some
form.

Does this mean all computer languages have a ‘print’? No. In Haskell, for
example, we might write putStrLn "Hello World!" but the result is similar
(display a message on the screen). Sometimes we have to be more explicit about
where to print the message. In Java we might say System.out.print("Hello World!")
to print to the screen2.

2Technically we are printing to the console.

Chapter 6

Variables

Any non-trivial program will operate on some data. To keep track of this data
within our program we use variables. Each variable is identified in our program
by a variable name. In this section we will take our first look at variables.

In Chapter 5 we wrote a simple program to print out a standard greeting
‘Hello World!’ to the screen. The message was put into a print statement using
quotation marks to delimit the message, this is called a string literal.

String literals in a program are a ’code smell’ (something that is not neces-
sarily wrong but may be evidence that something is in fact wrong). Consider
our hello world program, the message is specified in the code, if I want to
change the message I need to find the string literal and change the code. This
is not a problem in this program (after all, it has only one line) but think
about a larger program with many different messages spread through the code.
Say I want to change my interface from English to French. I would need to
search through all the program code and translate each literal string. Worse,
I now have a French interface but the English messages are all gone. If I want
German instead of French? Again, every message literal string must be found
and translated. This is obviously not a good solution.

The first step in cleaning up our program is to gather the messages in one
location. Having all messages in one place means we do not need to search
the code for them. In the following sections we will rework our code to use a
variable for the message. Importantly we are not changing the behaviour of
the program, we expect all of the tests to continue to pass as we modify the
code. This process of modifying code to improve it without changing what it
does is called ‘refactoring’ and is one of the principal reasons for having good
tests in place. Having good tests ensures that whenever we refactor the code
to improve its readability, improve performance, simplify it, or make it easier
to manage, we can do so confident that the passing tests ensure we are not
changing what the code is designed to do.

29

30 CHAPTER 6. VARIABLES

6.1 Python Variables

We ended the last section (§5.3) in the Python version of the ‘hello world’
program, so let’s pick up there.

We want to develop our program to make it easier to maintain by replacing
the string literal in our print statement with a variable. We are modifying our
code but we have not changed any requirements (a practice called ‘refactoring’),
so first run our tests to confirm the code is working.

bash

1 poetry run pytest

poetry run pytest

1 ============================== test session starts
===============================

C

C

2 platform linux -- Python 3.9.2, pytest-7.1.2,
pluggy-1.0.0

C

C

3 rootdir: /home/vagrant/python
4 plugins: bdd-6.0.1
5 collected 1 item
6

7 tests/test_convert.py .
[100%]

C

C

8

9 =============================== 1 passed in 0.03s
==

C

C

Now edit the program.

bash

1 vi convert.py

To match the following.

convert.py

1 greeting_message = "Hello World!"
2 print(greeting_message)

Save the changes.
In line 1 we assign the variable greeting_message the same literal string

"Hello World!" we printed before. Then in line 2 we use the greeting_message
variable in place of the literal string.

Re-run the tests to confirm we have broken nothing.

6.2. LUA VARIABLES 31

bash

1 poetry run pytest

poetry run pytest

1 ============================== test session starts
===============================

C

C

2 platform linux -- Python 3.9.2, pytest-7.1.2,
pluggy-1.0.0

C

C

3 rootdir: /home/vagrant/python
4 plugins: bdd-6.0.1
5 collected 1 item
6

7 tests/test_convert.py .
[100%]

C

C

8

9 =============================== 1 passed in 0.03s
==

C

C

The program is producing the same result, so our change has broken noth-
ing.

We now use a variable (a variable is simply a label on a piece of data) to
refer to our greeting message. We will see in the following sections how to use
this variable to do something more interesting.

6.2 Lua Variables

Moving on to our Lua example.

bash

1 cd ~/lua
2 busted

We should see the tests pass.

busted

1 o
2 1 success / 0 failures / 0 errors / 0 pending : 0.002722

seconds
C

C

Now edit the Lua version of our program.

bash

1 vi bin/convert.lua

32 CHAPTER 6. VARIABLES

Change this program to the following.

bin/convert.lua

1 greeting_message = "Hello World!"
2 print(greeting_message)

This is identical to the Python version of our program but don’t worry we
will see differences later. What this example shows is that different languages
share many features, especially with these core coding ideas like variables.

Re-run the tests to confirm we have broken nothing.

bash

1 busted

busted

1 o
2 1 success / 0 failures / 0 errors / 0 pending : 0.002722

seconds
C

C

6.3 Bash Variables

On to our Bash example.

bash

1 cd ~/bash
2 shellspec

shellspec

1 Running: /bin/sh [sh]
2 .
3

4 Finished in 0.04 seconds (user 0.04 seconds, sys 0.00
seconds)

C

C

5 1 example, 0 failures

Everything passing our tests. Edit the program file.

bash

1 vi bin/convert

Change its content to the following.

6.3. BASH VARIABLES 33

bin/convert

1 greeting_message="Hello World!"
2 echo "${greeting_message}"

Wow! Line 2 is very different in Bash. Not only do we use echo but the
reference to the variable ${greeting_message} is more complex.

Let’s unpack line 2. echo is the instruction to output to the screen. Next we
have what looks like a string literal (just like when we had "Hello World!" in
this position) but it’s not. This string contains a variable reference ${greeting_message}.
This requires some examination.

In general, in Bash, we define variables using their name (label) and refer to
the value assigned to a variable by adding the $ prefix. So, greeting_message="Hello World!"
defines variable greeting_message to have the value "Hello World!" (the
literal string ’Hello World!’) and $greeting_message recalls the value of
greeting_message.

In this case, we could have written the program as follows.

bin/convert

1 greeting_message="Hello World!"
2 echo $greeting_message

Try it. If you change the program and run the tests you will find it all still
passes.

The echo command in Bash treats everything it sees as a string of characters
to be output to the screen.

When run, the line echo $greeting_message is first expanded by replac-
ing $greeting_message with its value Hello World!. Notice that the ""
characters are not part of the value of greeting_message they are only used
to delimit a string (tell Bash that whatever is between them is the value to
be assigned to greeting_message). After this expansion the line becomes
echo Hello World! and echo takes anything following (Echo World!) as the
string to be output.

Why then all the additional "{}" characters in the original version of the
script?

6.3.1 Separating variable names

Suppose I want to print an X immediately after the greeting_message? I
might try echo $greeting_messageX but this will fail because we are now
referencing a variable called greeting_messageX, which is undefined in this
program so Bash replaces the reference with nothing and echo prints nothing1.
Having failed, we might try echo $greeting_message X but this outputs the
greeting_message, a space, and then an X. Not what we want. Finally, we

1Actually it prints a newline with no message.

34 CHAPTER 6. VARIABLES

can use the special syntax surrounding the variable name with {}. This allows
us to place the X immediately after the variable echo ${greeting_message}X,
getting us what we want (the message Hello World!X, with the X immediately
after our message).

That explains the {} characters, but why surround the variable with ""
characters? We do this to prevent two, fairly subtle, causes of bugs in Bash
scripts; ‘globbing’ and ‘word splitting’.

6.3.2 Globbing and word splitting

‘Globbing’ is a feature of Bash that replaces certain characters on a line with
entries from the file system. If, for example, you enter the command echo *
on the Bash command line you will not see a * output. Instead you will see
a list of files and directories (in fact the same list as you would see by typing
ls .). This is because of ‘globbing’. Before a line is executed (either on the
command line or in a script) the * is expanded to a space separated list of
files and directories that match the wildcard pattern *. The problem with this
is that if a variable contained one of these globbing patterns then it will be
expanded. Try the following at the Bash command line.

bash

1 x="*"
2 echo $x

Line 1 assigns a string literal containing one character (*) to variable x.
The output from the echo on line 2 will not be * (the value we assigned to
x) but bin spec, the two directories in our current working directory. Bash
first expanded echo $x to echo * and it then matched * to the content of the
current working directory and expanded the command line to echo bin spec.
Globbing expansions like this are a source of often subtle and difficult to find
bugs in Bash scripts, you can avoid them by simply enclosing all strings (or
things you want to treat as a single string) in "". On the Bash command line
try the following.

bash

1 x="*"
2 echo "$x"

This time you see the * as intended. Enclosing the variable expansion in
"" prevents Bash from globbing the expanded string.

What about ‘word splitting’2?
To understand the problem with word splitting we need to understand a

bit more about how Bash processes commands. To keep things simple, and
relevant to the current example, we will consider the echo command.

2Also called ‘field splitting’.

6.3. BASH VARIABLES 35

The echo command can be followed by a white space separated list of fields,
it will then print to the screen a line of text constructed from these fields, each
field separated by a single space3. The ‘word splitting’ problem arises when
outputting variables containing strings with multiple spaces. Try the following
on the command line.

bash

1 x="magic disappearing spaces"
2 echo $x

It does not matter how may spaces are between the words in the string
assigned to x, so long as there are more than one to demonstrate the splitting
issue.

echo $x

1 magic disappearing spaces

All the space in the string is reduced to single space. This is because Bash
first expands echo $x to echo magic disappearing spaces then
outputs each ‘field’ (in this example the words ‘magic’, ‘disappearing’, and
‘spaces’) separated by a single space.

Now try using quotes.

bash

1 echo "${x}"

I’ve also included the {} because, although unnecessary here, it is a good
habit to develop.

echo "${x}"

1 magic disappearing spaces

Notice that this time the space in the string is preserved, this is because
Bash expands echo "${x}" to echo "magic disappearing spaces"
and echo sees the literal string as one field so it is printed out literally.

This is ‘defensive programming’; programming to avoid problems that may
occur if we take a more relaxed approach. Developing the habit of always
using the longer form "${variable}" you will avoid many painful debugging
sessions.

Before moving on make sure bin/convert contains the correct code.

3This is not a complete description of echo, for a complete description refer to the
man echo page.

36 CHAPTER 6. VARIABLES

bin/convert

1 greeting_message="Hello World!"
2 echo "${greeting_message}"

And remember to run the tests to check your changes!

6.4 Variables Review

In this chapter we have learned that variables are labels by which we refer to
data in our program.

Chapter 7

Special Variables

Most programming languages have special variables. These might be refer-
encing data from outside the program, or data from a command line, or even
referencing data defined as part of the language itself. We will investigate many
of these special variables later, for now we are going to focus on getting data
from the command line.

What do we mean ‘get information from the command line’?
When a command is entered on the command line it starts with the com-

mand (in this case the program we want to run) and is often followed by one
or more arguments that changes the way the command works. For example, if
we enter ls at the bash command prompt we see the list of files and directories
in the current directory. If we enter ls .. the two dots tell the ls command
to list the files and directories in the parent directory to the current one. The
.. is a value provided to the ls program as a ‘command line argument’.

Now we will change our program to use some information from the command
line and greet the user by name.

7.1 Command Line Arguments in Bash

We left off in the Bash version of the program, so let’s pick up there. We want
to be able to enter a name by which the program will greet us. If we supply a
name on the command line bin/convert "Mark" the program should greet us
with Hello Mark!. If no name is supplied on the command line we will expect
Hello ! for now (after we learn about controlling a program’s flow (Chapter 9)
we will improve our code to do something more sensible).

With new requirements we need new tests. Update your environment.

bash

1 exercises 01.02

Run the tests, which we expect to fail as we have not yet written the code.

37

38 CHAPTER 7. SPECIAL VARIABLES

bash

1 shellspec

Sure enough the tests fail.

shellspec

1 Running: /bin/sh [sh]
2 FF
3

4 Examples:
5 1) convert shows greeting #1
6 When run script bin/convert
7

8 1.1) The output should equal Hello !
9

10 expected: "Hello !"
11 got: "Hello World!"
12

13 # spec/bin/convert_spec.sh:8
14

15 2) convert shows greeting #2
16 When run script bin/convert Mark
17

18 2.1) The output should equal Hello Mark!
19

20 expected: "Hello Mark!"
21 got: "Hello World!"
22

23 # spec/bin/convert_spec.sh:8
24

25 Finished in 0.06 seconds (user 0.05 seconds, sys 0.01
seconds)

C

C

26 2 examples, 2 failures
27

28

29 Failure examples / Errors: (Listed here affect your
suite's status)

C

C

30

31 shellspec spec/bin/convert_spec.sh:6 # 1) convert shows
greeting #1 FAILED

C

C

32 shellspec spec/bin/convert_spec.sh:6 # 2) convert shows
greeting #2 FAILED

C

C

Modify the bin/convert program as follows.

7.2. COMMAND LINE ARGUMENTS IN LUA 39

bin/convert

1 name="${1}"
2 greeting_message="Hello ${name}!"
3 echo "${greeting_message}"

Re-run the tests.

The tests now pass. In the program, line 1 assigns the value in variable
1 to a new variable name. In a Bash script variables 1, 2, through 9 are
assigned values from arguments supplied on the command line1. Variable 0 is
assigned the name of the program being called2. If we invoke our script with
bin/convert "Mark" then $1 will be assigned the literal string ‘Mark’.

Why assign this to variable name rather than use it directly? The name 1
does not provide any useful information to someone reading our code. At least
not once we use it in our greeting. The only thing greeting_message="Hello ${1}!"
tells us is that the greeting should contain the first argument from the command
line, which, while accurate tells us nothing about the program’s intended use
for this argument. The variable name tells us that the author of the program
intends this argument to be a name.

A variable name should tell someone reading your code what data it refers
to. That is it in a nutshell. There are several heuristics we can use make
effective variable names and we will consider these in detail in Appendix B.

As your scripts become more complex you will find that clear variable names
become increasingly necessary.

7.2 Command Line Arguments in Lua

Moving to our Lua example and run the tests.

bash

1 cd ~/lua
2 busted

These tests fail because we updated the exercise setup and we have not yet
written the new Lua code.

1This is not the complete picture as we shall see in §??.
2Again, this is not the complete picture but will do for now.

40 CHAPTER 7. SPECIAL VARIABLES

busted

1 --
2 0 successes / 2 failures / 0 errors / 0 pending :

0.005102 seconds
C

C

3

4 Failure → spec/convert_spec.lua @ 2
5 convert shows greeting
6 spec/convert_spec.lua:6: Expected objects to be the same.
7 Passed in:
8 (string) 'Hello World!
9 '

10 Expected:
11 (string) 'Hello !
12 '
13

14 Failure → spec/convert_spec.lua @ 8
15 convert shows greeting
16 spec/convert_spec.lua:12: Expected objects to be the

same.
C

C

17 Passed in:
18 (string) 'Hello World!
19 '
20 Expected:
21 (string) 'Hello Mark!
22 '

We fix this by editing the Lua program to contain the following.

bin/convert.lua

1 name = arg[1]
2 greeting_message = "Hello " .. name .. "!"
3 print(greeting_message)

As in our Bash example we are assigning the command line argument to
the variable name. Unlike Bash, Lua creates a special variable called arg. This
arg variable refers to data in a ‘table’. Briefly (we look at tables in more detail
later) a table is like a list of other data where each item in the list can be
referred to using a key. In this case the table contains a list of the command
line arguments, each argument is referred to by its position on the command
line (so the key 1 in this example refers to the first argument passed on the
command line).

Line 2 looks very different to the Bash version too. Here we are concate-
nating (the two dots .. tell Lua to take the string to the left, make a copy and
then append a copy of the string to the right) three strings; the literal string
"Hello " (note the space), the string held in name, and the literal string "!".

7.3. COMMAND LINE ARGUMENTS IN PYTHON 41

The resulting string is then assigned to the greeting_message variable.
Line 3 is unchanged.

7.3 Command Line Arguments in Python

Moving on to the Python example and running the new tests3.

bash

1 cd ~/python
2 poetry run pytest --tb=no -v

Again, these tests will fail because we have new requirements, hence new
tests, which require new code.

poetry run pytest –tb

1 ============================= test session starts
==============================

C

C

2 platform linux -- Python 3.9.2, pytest-7.1.2,
pluggy-1.0.0 -- /usr/bin/python3

C

C

3 cachedir: .pytest_cache
4 rootdir: /home/vagrant/python
5 plugins: bdd-6.0.1
6 collected 2 items
7

8 tests/test_convert.py::test_welcome_message[-Hello !\n]
FAILED [50%]

C

C

9 tests/test_convert.py::test_welcome_message[Mark-Hello
Mark!\n] FAILED [100%]

C

C

10

11 =========================== short test summary info
============================

C

C

12 FAILED tests/test_convert.py::test_welcome_message[-Hello
!\n] - AssertionErr...

C

C

13 FAILED
tests/test_convert.py::test_welcome_message[Mark-Hello
Mark!\n] - Asse...

C

C
C

C

14 ============================== 2 failed in 1.37s
===============================

C

C

We can fix these failing tests by changing the program to the following.

3I use the --tb=no -v flags to produce more compact output for this book. If you want
to leave these flags off the result will be the same but with more verbose output.

42 CHAPTER 7. SPECIAL VARIABLES

convert.py

1 import sys
2

3 name = sys.argv[1]
4 greeting_message = f"Hello {name}!"
5 print(greeting_message)

Python deals with command line arguments a bit differently to Bash and
Lua. Rather than built in special variables like $1 and argv, Python relies on a
package (a library of code4) that is loaded into the script using the import sys
directive on line 1. Once the sys package is loaded we have access to sys.argv
which works in a similar way to Lua’s argv; each command line argument
is placed into the corresponding sys.argv entry (so the first command line
argument is placed in sys.argv[1]). As with the other versions of this program
we set create the name variable to give this first argument a more readable name.

Line 4 assigns the greeting string to greeting_message. This is a Python
‘format’ string, which work in a similar way to Bash strings in that the variable
in {} is expanded into the string5.

7.4 Special Variables Review

In this chapter we have learned that each language provides certain ‘special’
variables. These special variables come from various sources but all share the
common feature that we do not declare them directly in our program, they
‘just appear’.

We will encounter more of these special variables as we progress.

4We discuss these packages when we cover organising code.
5This is doing Python format strings a disservice, they are more powerful than this

suggests but for now this simplification will serve.

Chapter 8

Functions

One of the core concepts in IT is abstraction (§4.3). This chapter introduces
one of the most basic forms of abstraction; the function.

A variable is a label that allows us to refer to data in our program, a
function is a label that allows us to refer to one or more program statements
in our program. As with variables we use the names of functions to make it
clear what the enclosed statements do.

Functions have another neat trick, we can pass data to the function for it
to act on (and get information back).

8.1 Parameters and Arguments

Some terminology. When we define a function we can specify parameters that
will become variables in the function’s code. When we use a function we can
provide the data to be assigned to these parameters.

For example, suppose we define a function as follows.

Simple function

1 def add (a,b):
2 return a+b

This says, define a function labelled add that has two parameters a and
b. When called this function expects two values to be provided, these will be
assigned to variables a and b and the statements in the function (in this case
the single return statement on line 2) will be executed.

We call this function in our code as follows.

Calling the add function

1 add(1,2)

This will call the add function and assign 1 to a and 2 to b. The return
statement is run and the function returns a+b (so, 3 in this example).

43

44 CHAPTER 8. FUNCTIONS

It is important to understand that the code inside the function is not run
when defining the function. It it only run when the function is called and values
are provided to a and b.

Once defined a function can be called as often as we like.

Repeated calls

1 add(1,2)
2 add(15,3)
3 add(5.3,6.2)

These return 3, 18, and 11.5 respectively.

8.2 Functions in Python

We left variables (Chapter 7) in the Python example so let’s pick up there by
adding a function.

First, our test should be passing so check that now.

bash

1 poetry run pytest

Once we have passing tests we are ready to refactor our code to introduce a
function (remember that during refactoring we are aiming to improve our code
without changing what it does; in other words we don’t need new tests, but all
existing tests must continue to pass).

Modify the convert.py code as follows.

convert.py

1 import sys
2

3 name = sys.argv[1]
4 greeting_message = f"Hello {name}!"
5

6

7 def display_greeting(greeting):
8 print(greeting)
9

10

11 display_greeting(greeting_message)

Once you have saved these changes, rerun the tests to make sure we have
broken nothing.

8.2. FUNCTIONS IN PYTHON 45

bash

1 poetry run pytest

What has this change achieved?

Firstly, and most obviously, it shows the basic form of a function in Python.
On line 7 we use the def keyword1 to tell Python we are about to declare a func-
tion. Next we tell Python that we want to label this function display_greeting
and this is followed by a list of parameters this function expects (in this case we
expect just one and we tell Python that any value provided for this parameter
should be labelled greeting). The function declaration is ended with a colon
character.

Following the function declaration we provide the code that is to be labelled
display_greeting. In Python the function’s code is indented with respect to
the declaration. In this example the function contains a single line of code,
line 8. This is just the print statement from our previous version of the
convert.py program but we have replaced the greeting_message variable
with the parameter label greeting.

So that’s the function defined. Defining the function will not print any
message though, to do this we must ‘call’ the function, which is what we do on
line 11. When we call the display_greeting function we ‘pass’ the content of
variable greeting_message as the argument (in Python arguments appear as
a comma separated list between parentheses immediately after the name of the
function we want to call). This argument value is assigned to the parameter
greeting (just as we might assign a variable, in fact when display_greeting
is executed the parameter greeting is a variable within the function code).
The code within the function is run and the print statement outputs the value
in variable greeting.

That may seem like a lot of work and all we seem to have done is make our
code longer and more complex. However we have added some useful informa-
tion, specifically that the print statement is not simply a generic ‘output this
string’ but in fact is more specifically displaying a greeting (as indicated by
our function’s name display_greeting). In a short program like this example
this may seem unnecessary but trust me this sort of clarity in our code will be
vital later.

We can go further. We are currently creating our message using a format
string on line 4, which is fine but we can do better. What is this line really
doing within our program? It is ‘composing’ the greeting, so let’s make this
clear by putting it into a function. Once again, edit convert.py to contain the
following.

1A ‘keyword’ is a reserved sequence of characters that has special meaning in the pro-
gramming language.

46 CHAPTER 8. FUNCTIONS

convert.py

1 import sys
2

3 name = sys.argv[1]
4

5

6 def compose_greeting(name):
7 return f"Hello {name}!"
8

9

10 def display_greeting(greeting):
11 print(greeting)
12

13

14 greeting_message = compose_greeting(name)
15 display_greeting(greeting_message)

Examples

We are working with examples that emphasis particular coding features!
We will be learning how to write better code when we start ‘program-
ming’.

As always, rerun the tests to ensure we have broken nothing.

bash

1 poetry run pytest

The new compose_greeting function shows how Python functions can re-
turn values using the return keyword. When compose_greeting is called it
will return a value (the greeting string), behaving a little like a variable.

There is one more thing we could do to tidy up our program using functions.
Edit convert.py as follows.

8.2. FUNCTIONS IN PYTHON 47

convert.py

1 import sys
2

3

4 def compose_greeting(name):
5 return f"Hello {name}!"
6

7

8 def display_greeting(greeting):
9 print(greeting)

10

11

12 def main(command_line_arguments):
13 name = command_line_arguments[1]
14 greeting_message = compose_greeting(name)
15 display_greeting(greeting_message)
16

17

18 main(sys.argv)

Hopefully you are now getting used to this next step; rerun the tests to
ensure we have broken nothing.

bash

1 poetry run pytest

The new main function gathers together all of the code for our new program.
The name main is a common convention across programming languages, so if
you are looking at unfamiliar code for the first time looking for main is a good
starting point2.

2Although common the use of main is not universal.

Chapter 9

Flow Control

49

Part II

Programming

51

53

Intro to progrmming.

Chapter 10

Requirements

55

Appendix A

vi

This is not a book on using vi (refer to [Boo22] for a detailed introduction)
but for convenience this appendix offers sufficient instruction for basic editing.

57

59

60 APPENDIX B. NAMING THINGS

Appendix B

Naming Things

Choosing variable names

There is a huge amount of advice, guidance, and even prescription,
about naming variables. Much of it contradictory. At the risk of adding
to this cacophony here is my advice.
In a professional environment you will often be required to follow a
project coding standard and this will often mandate a particular ap-
proach to naming variables (you must abide by these rules for the sake
of consistency within the project—even if these rules seem stupid).
Beyond simply choosing a good name you may need to create the name
in a particular format. Common naming formats include:

lowercase Use only lowercase letters. Words with the variable name
may be separated by an underscore.

UPPERCASE Use only uppercase letters. Words with the variable
name may be separated by an underscore.

CamelCase Start each word with a capital letter, otherwise use lower
case.

These various formats may be used to represent different sorts of data.
For example, UPPERCASE for constant values, CamelCase for classes,
lowercase for local variables, and so on.
There is some merit to this practice, but with modern Integrated De-
velopment Environment (IDE)a the advantages are slight. That said,
don’t swim upstream, some of these conventions are so widely used (like
CamelCase for class names) that it seems obtuse to ignore them.
Some naming standards include additional information, such as the type
of the data referred to; end variable with _i for integer values, _s if the
data is a string.
In my opinion adding information like variable type is almost always a
problem in the long-term. Avoid this practice.

aA tool used by developers to simplify navigating complex software.

Bibliography

[Boo20a] Mark Bools. Git from Scratch. From Scratch. 2020. url: https:
//saltyvagrant.com/members/books/git/git.html.

[Boo20b] Mark Bools. Vagrant from Scratch. From Scratch. 2020. url: https:
//saltyvagrant.com/members/books/vagrant/vagrant.html.

[Boo22] Mark Bools.NeoViM from Scratch. From Scratch. 2022. url: https:
//saltyvagrant.com/members/books/neovim/neovim.html.

61

https://saltyvagrant.com/members/books/git/git.html
https://saltyvagrant.com/members/books/git/git.html
https://saltyvagrant.com/members/books/vagrant/vagrant.html
https://saltyvagrant.com/members/books/vagrant/vagrant.html
https://saltyvagrant.com/members/books/neovim/neovim.html
https://saltyvagrant.com/members/books/neovim/neovim.html

Index

vagrant, 7
virtualbox, 7

63

	Contents
	How to…
	…read this book
	…get the most from this book
	…manage your workspace

	Setting Up Your Environment
	VirtualBox
	Vagrant
	git
	Installing the host tools
	Setup Files for the Course

	What this book is about
	Concepts Over Specifics
	Why Lua, Python, and Bash?
	Art, Craft, or Science?
	Coding, Programming, and Software Engineering
	The Essence of Programming

	Core Concepts
	Cohesion
	Coupling
	Abstraction
	Separation of Concerns
	Scope
	Context
	Contingency
	Entropy
	Parsimony

	Coding
	The Obligatory Hello World Program
	Hello World in Bash
	Hello World in Lua
	Hello World in Python
	Hello World Review

	Variables
	Python Variables
	Lua Variables
	Bash Variables
	Variables Review

	Special Variables
	Command Line Arguments in Bash
	Command Line Arguments in Lua
	Command Line Arguments in Python
	Special Variables Review

	Functions
	Parameters and Arguments
	Functions in Python

	Flow Control

	Programming
	Requirements
	vi
	Naming Things
	Bibliography
	Index

